Supremum and Infimum
UBC M220 Lecture Notes by Philip D. Loewen

The Real Number System. Work hard to construct from the axioms a set \(\mathbb{R} \) with special elements \(\mathbb{O} \) and \(\mathbb{I} \), and a subset \(\mathbb{P} \subseteq \mathbb{R} \), and mappings \(A : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), \(M : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), for which defining the basic operations above in terms of
\[
x + y = A(x, y), \quad x \cdot y = M(x, y), \quad x > \mathbb{O} \iff x \in \mathbb{P}
\]
produces a consistent setup in which the familiar rules of arithmetic all work.

Trichotomy. For every real number \(x \), exactly one of the following is true:
\[
x < 0, \quad x = 0, \quad x > 0.
\]
By taking \(x = b - a \), we deduce that whenever \(a, b \in \mathbb{R} \), exactly one of the following is true:
\[
a < b, \quad a = b, \quad a > b.
\]
Given \(a, b \in \mathbb{R} \), it’s rather obvious that
\[
a > b \implies \exists \varepsilon > 0 : a \geq b + \varepsilon.
\]
(Indeed, if \(a > b \) then \(\varepsilon = a - b \) obeys the conclusion.) The contrapositive of this statement is logically equivalent, but occasionally useful:
\[
\left[\forall \varepsilon > 0, \ a < b + \varepsilon \right] \implies a \leq b.
\]
It reveals that one way to prove “\(a \leq b \)” is to prove a collection of apparently easier inequalities involving a larger right-hand side.

Definition. Let \(S \subseteq \mathbb{R} \). To say, “\(S \) is bounded above,” means there exists \(b \in \mathbb{R} \) such that
\[
(*) \quad \forall s \in S, \ s \leq b.
\]
Any number \(b \) satisfying (*) is called “an upper bound for \(S \).”
Changing “\(\leq \)” to “\(> \)” in (*) produces a definition for the phrases “\(S \) is bounded below” and “\(b \) is a lower bound for \(S \).”
To say that \(S \) is bounded means that \(S \) is bounded above and \(S \) is bounded below.

Definition. Let \(S \subseteq \mathbb{R} \). The phrase, “\(\beta \) is a least upper bound for \(S \),” means two things:
(i) \(\forall s \in S, \ s \leq \beta \), i.e., \(\beta \) is an upper bound for \(S \), i.e.,
\[
(*) \quad \forall s \in S, \ s \leq \beta.
\]
(ii) Every real number less than \(\beta \) is not an upper bound for \(S \). Express this second condition as

\[(**)
\forall \varepsilon > 0, \exists s \in S : \beta - \varepsilon < s .\]

Notation. A given set \(S \) can have at most one least upper bound (LUB).

[Pf: Suppose \(\beta_0 \) is a least upper bound for \(S \). Any real \(\beta > \beta_0 \) breaks (**)—use \(\varepsilon = \beta - \beta_0 \) and recall (*). Any real \(\beta < \beta_0 \) breaks (*)—use \(\varepsilon = \beta_0 - \beta \) and recall (**).]

If \(S \) has a least upper bound, it is a unique element of \(\mathbb{R} \) denoted

\[\sup S \quad \text{(Latin supremum).}\]

A symmetric development leads to the concepts of sets bounded below, greatest lower bounds, and the Latin notation

\[\inf S \quad \text{(Latin infimum).}\]

The Least Upper Bound Property. The hard work in the axiomatic construction of the real number system is in arranging the following fundamental property:

For each nonempty subset \(S \) of \(\mathbb{R} \), if \(S \) has an upper bound, then there exists a unique real number \(\beta \) such that \(\beta = \sup S \).

[Alternate terminology: \((\mathbb{R}, \leq)\) is order-complete.]

Proposition. \(\mathbb{R} \) has the greatest lower bound property, i.e.,

For each nonempty subset \(S \) of \(\mathbb{R} \), if \(S \) has a lower bound, then there exists a unique real number \(\alpha \) such that \(\alpha = \inf S \).

Proof. Consider any subset \(S \) of \(\mathbb{R} \), assuming \(S \neq \emptyset \) and \(S \) has a lower bound. Define

\[L = \{ x \in \mathbb{R} : x \text{ is a lower bound for } S \} .\]

Note \(L \neq \emptyset \) by hypothesis; the definition of \(L \) gives

\[\forall x \in L, \forall s \in S, x \leq s .\quad (*)\]

This is equivalent to

\[\forall s \in S, \forall x \in L, x \leq s .\quad (**)\]

The latter form shows that any \(s \) in \(S \) provides an upper bound for the set \(L \); since \(S \neq \emptyset \) by hypothesis, it follows that \(L \) has an upper bound. By the LUB Property, \(\alpha = \sup(L) \) is a well-defined real number. We’ll show that \(\alpha \) is the desired greatest lower bound for \(S \).

First, \(\alpha \) is a lower bound for \(S \). For otherwise, there would be some \(s \) in \(S \) with \(s < \alpha \); this \(s \) would be an upper bound for \(L \) [see (***) above], contradicting the definition of \(\alpha \) as the least upper bound for \(L \).

Second, \(\alpha \) is the greatest lower bound for \(S \). Indeed, consider any \(\gamma > \alpha \): by construction, \(\alpha \) is an upper bound for \(L \), so \(\alpha \geq x \forall x \in L \). Consequently \(\gamma \not\in L \), i.e., \(\gamma \) is not a lower bound for \(S \).
Relevance: Existence Theorems. The central feature of the LUB Property is the statement that there exists a real number (the supremum) with certain properties. Thus it provides the foundation for all interesting theorems involving existence of certain mathematical objects. (E.g., the IVT from Calculus: If $f: [a, b] \rightarrow \mathbb{R}$ is continuous and $f(a) < 0 < f(b)$, then there exists a real number $x \in (a, b)$ obeying $f(x) = 0$.) The foundation can serve in two ways:

(i) Directly: The desired number may be defined as a supremum. E.g., to prove $\exists x \in \mathbb{R} : x^2 = 2$, we appeal to order-completeness to assert that $\alpha = \sup \{q \in \mathbb{Q} : q^2 < 2\}$ is a well-defined real number, then use (*)--(**) to show that $\alpha^2 = 2$.

(ii) Indirectly: The definition of “sup” ensures the existence of near-maximal elements. For example, suppose X is some nonempty set, and $f: X \rightarrow \mathbb{R}$ is a function whose range $f(X)$ is bounded above. Then $\beta = \sup f(X) = \sup \{f(x) : x \in X\}$ is a well-defined real number. We cannot assert $\beta \in f(X)$ without knowing more about f and X, but we can argue as follows: for each $n \in \mathbb{N}$, $\beta - 1/n$ is less than the least upper bound for $f(X)$, so it is not an upper bound. This means that some element of $f(X)$—call it y_n—obeys $y_n > \beta - 1/n$. Choose some element of X, and name it x_n, satisfying $y_n = f(x_n)$. This procedure creates a sequence x_1, x_2, \ldots in X with the useful property

$$\forall n \in \mathbb{N}, \quad \beta - \frac{1}{n} < f(x_n) \leq \beta.$$

[Such a sequence is called a “maximizing sequence” for f.]

Theorem (Archimedes). In \mathbb{R}, the set \mathbb{N} has no upper bound. That is,

$$\forall r \in \mathbb{R}, \exists n \in \mathbb{N} : n > r.$$

Proof. (By contradiction.) Suppose, on the contrary, that \mathbb{N} has an upper bound. Evidently $\mathbb{N} \neq \emptyset$, so by LUB property, $\beta = \sup \mathbb{N}$ exists in \mathbb{R}. Consider $\gamma \overset{\text{def}}{=} \beta - 1$: (**) gives some n in \mathbb{N} such that $\gamma < n$. Hence $\beta - 1 < n$, i.e., $\beta < n + 1$. Since $n + 1 \in \mathbb{N}$, this contradicts property (*) for β. // // //

Corollaries. (a) For any fixed $\varepsilon > 0$, some $n \in \mathbb{N}$ obeys $1/n < \varepsilon$.

(b) Whenever $x, y \in \mathbb{R}$ obey $y - x > 1$, we have $(x, y) \cap \mathbb{Z} \neq \emptyset$.

(c) For any $a, b \in \mathbb{R}$ with $a < b$, we have both $(a, b) \cap \mathbb{Q} \neq \emptyset$ and $(a, b) \setminus \mathbb{Q} \neq \emptyset$.

Proof. (a) Apply Archimedes to $r = 1/\varepsilon$ to produce $n \in \mathbb{N}$ s.t. $n > 1/\varepsilon$, i.e., $1/n < \varepsilon$.

(b) Let $S = \{n \in \mathbb{Z} : n \geq y\}$. By Archimedes, $S \neq \emptyset$; by Fact 1, $\hat{n} = \min(S)$ exists. Let’s show $z = \hat{n} - 1 \in (x, y)$:

(i) $z < y$: indeed, $z \geq y$ would imply $z \in S$, contradicting minimality of \hat{n}.

(ii) \(z > x \): indeed, \(\hat{n} \in S \implies \hat{n} \geq y > x + 1 \implies \hat{n} - 1 > x \).

(c) Given \(a < b \), apply (a) to get \(n \in \mathbb{N} \) such that \(1/n < b - a \). Then \(nb - na > 1 \), so (b) applies to \(x = na, y = nb \): some \(m \in \mathbb{Z} \) obeys \(na < m < nb \), i.e., \(a < \frac{m}{n} < b \). Thus \(\frac{m}{n} \in (a, b) \cap \mathbb{Q} \).

Likewise, if \(a < b \) then \(\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}} \) so some \(q \in \mathbb{Q} \) obeys \(\frac{a}{\sqrt{2}} < q < \frac{b}{\sqrt{2}} \). It follows that \(q\sqrt{2} \in (a, b) \setminus \mathbb{Q} \).

\[\text{Home Practice.} \] Let \(S = \{1/n : n \in \mathbb{N}\} \). Use Archimedes to justify “\(\inf(S) = 0 \)” [check \((*)-(**)\)]. Note \(0 \not\in S \). [Write \(\beta = \min S \) when both \(\beta = \inf(S) \) and \(\beta \in S \), saying “the infimum is \textbf{attained}”. So for this \(S \), \(\inf(S) = 0 \) but \(\min(S) \) does not exist. Similarly, “\(\max \)” means “attained supremum.”]

\textbf{Easy Example (Sketch Steps Only).} Given subsets \(A \) and \(B \) of \(\mathbb{R} \) such that \(A \neq \emptyset \), \(B \) is bounded above, and \(A \subseteq B \), show that \(\sup A \leq \sup B \).

(i) Show \(\sup B \) exists. [ETS \(B \neq \emptyset \), \(B \) has upper bound.]

Proof: Since \(A \neq \emptyset \), some \(x \) obeys \(x \in A \). Since \(A \subseteq B \), this same \(x \) obeys \(x \in B \). Therefore \(B \neq \emptyset \). Now \(B \) is bounded above by assumption, so \(\sup B \) exists. Call it \(\beta \).

(ii) Show \(\sup A \) exists. [ETS \(A \neq \emptyset \), \(A \) has upper bound.]

Proof: Since \(B \) is bounded above, there exists some \(M \) satisfying \(y \leq M \) for all \(y \in B \). Since \(A \subseteq B \), every \(x \) in \(A \) obeys \(x \in B \), and hence \(x \leq M \). Thus \(M \) is an upper bound for \(A \), while \(A \neq \emptyset \) is given. It follows that \(\alpha \overset{\text{def}}{=} \sup A \) exists in \(\mathbb{R} \).

(iii) Show \(\sup A \leq \sup B \). [Define \(\beta = \sup B \). Assume \(\beta < \sup A \), get contradiction.]

The argument in (ii) shows that any upper bound for \(B \) is an upper bound for \(A \). In particular, \(\beta = \sup B \) must be an upper bound for \(A \). To show \(\beta \geq \alpha \), imagine the alternative: If \(\beta < \alpha \), then \(\beta \) is not an upper bound for \(A \) (by definition of \(\alpha = \sup A \)), a contradiction. We must have \(\beta \geq \alpha \).

(iv) T/F? Strict inclusion \(A \subseteq B \), \(A \neq B \), implies strict inequality \(\sup A < \sup B \).

False: Consider, e.g., \(A = (0, 1) \) and \(B = [0, 1] \). Here \(A \subseteq B \), \(A \neq B \), yet \(\sup(A) = 1 = \sup(B) \).

\[\text{////} \]

\textbf{Monotone Sequences}

\textbf{Definition.} Let a real-valued sequence \((a_n)_{n \in \mathbb{N}} \) be given.

(a) Call \((a_n) \) nondecreasing when \(n < m \implies a_n \leq a_m \);

(b) Call \((b_n) \) nonincreasing when \(n < m \implies a_n \geq a_m \).

Call \((a_n) \) \textit{monotone} when it is either nondecreasing or nonincreasing.
Theorem. Let sequence \((a_n)_{n \in \mathbb{N}}\) be monotone.

(a) If \((a_n)\) is nondecreasing and bounded above, then \(a_n \to \beta\) as \(n \to \infty\), where
\[\beta = \sup \{a_n\}.\]

(b) If \((a_n)\) is nonincreasing and bounded below, then \(a_n \to \alpha\) as \(n \to \infty\), where
\[\alpha = \inf \{a_n\}.\]

Proof. (a) Suppose the set of sequence entries \(A = \{a_n : n \in \mathbb{N}\}\) has an upper bound. Then \(\beta \overset{\text{def}}{=} \sup \{a_n : n \in \mathbb{N}\}\) is a unique real number, and it is an upper bound for \(A\). So
\[\forall n \in \mathbb{N}, \quad a_n \leq \beta.\]

But \(\beta\) is the least upper bound for \(A\), so given any \(\varepsilon > 0\), the number \(\beta - \varepsilon\) is not an upper bound for \(A\). That is, some element of \(A\) must be larger than \(\beta - \varepsilon\). But all the elements of \(A\) are sequence entries, so there must be some positive integer \(N\) such that \(a_N > \beta - \varepsilon\). Now since the sequence is nondecreasing, every integer \(n > N\) will have
\[\beta - \varepsilon < a_N \leq a_n \leq \beta.\]

This certainly implies
\[\forall n > N, \; |a_n - \beta| < \varepsilon.\]

(b) Similar. (Try it!) \(////\)

Application. Classic problem genre: Prove that a sequence converges without even guessing its limit, by showing that the sequence is monotonic and bounded. Prove those properties by induction.

Example. Let
\[x_1 = \sqrt{2} \text{ and } x_{n+1} = \sqrt{2 + x_n} \text{ for each } n \in \mathbb{N}.\]
Prove that \((x_n)_{n \in \mathbb{N}}\) converges, and find the limit.

Solution. If the sequence converges to \(\hat{x}\), then sending \(n \to \infty\) on both sides of the iteration equation \(x_{n+1} = \sqrt{2 + x_n}\) would give \(\hat{x} = \sqrt{2 + \hat{x}}\). Thus \(\hat{x} > \sqrt{2}\) and
\[0 = \hat{x}^2 - \hat{x} - 2 = (\hat{x} - 2)(\hat{x} + 1),\]
which would give \(\hat{x} = 2\). This is useful preliminary information that sets up a careful appeal to the monotone sequence theorem.

Let’s show that for each \(n \in \mathbb{N}\), the following statement is true:
\[P(n) : \quad x_n \leq x_{n+1} \leq 2.\]

Mathematical induction is effective here.

Base Case: Statement \(P(1)\) says \(\sqrt{2} \leq \sqrt{2 + \sqrt{2}} \leq 2\). This is true.

Induction Step: Suppose \(n \in \mathbb{N}\) is an integer for which statement \(P(n)\) is true. We would like to deduce the following.
\[P(n+1) : \quad x_{n+1} \leq x_{n+2} \leq 2.\]
To get this, add 2 to each entry in statement $P(n)$. This gives

$$2 + x_n \leq 2 + x_{n+1} \leq 4.$$

These numbers are all positive, so their square roots must come in the same order:

$$\sqrt{2 + x_n} \leq \sqrt{2 + x_{n+1}} \leq \sqrt{4}.$$

The iteration formula allows us to rearrange this as

$$x_{n+1} \leq x_{n+2} \leq 2,$$

which is precisely the outcome we seek.

By induction, statement $P(n)$ is true for each $n \in \mathbb{N}$. Thus the sequence (x_n) is nondecreasing and bounded above, so it must converge. The value of the limit must be 2, for reasons given earlier.