1. Suppose you are walking on the hill which satisfies the equation \(z = x^2 + xy + 2y^2 \):
 (a) at the point (1, 1) along which direction you are rising the quickest? And along this direction what is your slope? (6 points)

 \(\nabla f = \langle 2x + y, x + 4y \rangle \)

 at (1, 1), \(\nabla f = \langle 3, 5 \rangle \) along the direction of

 \[\overrightarrow{u} = \frac{\nabla f}{||\nabla f||} = \left\langle \frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right\rangle \]

 is rising the quickest.

 \[\text{slope} = D_{\overrightarrow{u}} f = ||\nabla f|| = \sqrt{34}. \]

 (b) on the unit disk \(x^2 + y^2 \leq 1 \) find the highest and lowest points on the hill. (4 points)

 \(\nabla f = \langle 2x + y, x + 4y \rangle = \langle 0, 0 \rangle. \)

 Critical point (0, 0), \(z(0,0) = 0. \) — Lowest point.

 On the boundary take \(x = \cos \theta, y = \sin \theta. \)

 \[z(\theta) = z(x,y) = \cos^2 \theta + \cos \theta \sin \theta + 2 \sin^2 \theta \]

 \[= 1 + \cos \theta \sin \theta + \sin^2 \theta = 1 + \frac{\sin 2\theta}{2} + \frac{1 - \cos 2\theta}{2} \]

 \[z'(\theta) = \cos 2\theta + \sin 2\theta = 0 \]

 \[\Rightarrow \tan 2\theta = -1, \quad 2\theta = \frac{3\pi}{4} \text{ or } \frac{7\pi}{4}, \quad \theta = \frac{3\pi}{8} \text{ or } \frac{7\pi}{8} \]

 For these two points: \(\cos \left(\frac{3\pi}{8} \right), \sin \left(\frac{3\pi}{8} \right) \), \(z = 1 + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1 - \frac{\sqrt{2}}{2}}{2} = \frac{3}{2} + \frac{\sqrt{2}}{2} \) — Higher point.

 \(\cos \left(\frac{7\pi}{8} \right), \sin \left(\frac{7\pi}{8} \right) \), \(z = 1 - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1 - \frac{\sqrt{2}}{2}}{2} = \frac{3}{2} - \frac{\sqrt{2}}{2} \) — So, higher point.