SOLUTIONS

200-204 Quiz 3 (10 points)

NAME:

UBC ID:

1. Sketch the graph of the surface $x^2 + y^2 - z^2 = 1$. (hint: first sketch the graph on xz-plane, then rotate this graph around one axis) (4 points)

$$x^2 - y^2 = 1 \implies x^2 + y^2 = z^2 = 1$$

(Not necessary)

2. Given the surface $z = \ln(x + 2y) + \sin(x + y)$,

 (a) find the tangent plane at $(-1, 1, 0)$; (3 points)

 (b) approximate z when $x = -1.01, y = 1.02$. (3 points)

 a). \[
 \frac{\partial z}{\partial x} = \frac{1}{x + 2y} + \cos(x + y), \quad \frac{\partial z}{\partial y} = \frac{2}{x + 2y} + \cos(x + y).
 \]

 at $(-1, 1)$: \[
 \frac{\partial z}{\partial x} = 2, \quad \frac{\partial z}{\partial y} = 3
 \]

 tangent plane: \[
 z = 2(x+1) + 3(y-1) = 2x + 3y - 1
 \]

 b). \[
 z(-1.01, 1.02) = z(-1, 1) + \frac{\partial z}{\partial x}(-0.01) + \frac{\partial z}{\partial y}(0.02)
 \]

 $= 0 + 2(-0.01) + 3(0.02) = 0.04$