SOLUTIONS

Math 200-108 Quiz 5 (10 points)

NAME:
UBC ID:

NOTE: WRITE YOUR ANSWERS DIRECTLY AND YOU DON'T NEED TO EXPLAIN!!!

1. Write the integral \(I = \iiint_D f(x, y, z) \, dx \, dy \, dz \) in \(dz \, dy \, dx \) and \(dx \, dy \, dz \) order, where \(D \) is bounded by \(z = 1 - x^2 \), \(z = 1 - y^2 \) in the first octant. (7 points)

\[
\iiint_D f(x, y, z) \, dz \, dy \, dx = \left(\int_0^1 \int_0^{1-x^2} \int_0^{1-y^2} + \int_0^1 \int_0^{x^2} \int_0^{1-y^2} \right) f(x, y, z) \, dz \, dy \, dx.
\]

\(dx \, dy \, dz \): projection of \(y - z \) is bounded by \(z = 1 - y^2 \)

\[
\iiint_D f(x, y, z) \, dx \, dy \, dz = \int_0^1 \int_0^{\sqrt{1-z}} \int_0^{\sqrt{1-z}} f(x, y, z) \, dx \, dy \, dz.
\]

-1 if missing integrand.

2. Write the integral \(I = \iiint_D (x + y + z) \, dV \) with cylindrical coordinates, where \(D \) is in the first octant and under the paraboloid \(z = 4 - x^2 - y^2 \). You don't need to compute this integral!!! (3 points)

\[
I = \int_0^\frac{\pi}{2} \int_0^2 \int_0^{4-r^2} (r \cos \theta + r \sin \theta + z) \, r \, dz \, dr \, d\theta.
\]

-1 if integrand wrong, \(z \) in terms of \(x, y, z \).