Math 322, lecture 11, 12/10/17

Last time: (1) Some thems
(2) A_n simple ($n \geq 5$)

Today: (1) A_n simple ($n \geq 5$)
(2) Group actions

Thm: Let $n \geq 5$ then A_n is simple.

Pf: Let $N \triangleleft A_n$ be normal, non-trivial.
Then there exists $\sigma \in N$ of minimal support.
where $\text{supp}(\sigma) = \{2, 3, \ldots, k\}$.

1. $k \neq 1$ ($\sigma \neq \text{id}$)
2. $k \neq 2$ (transpositions are odd)
3. If $k = 3$, σ is a 3-cycle, then N contains all 3-cycles
 (New Lemma: if σ, σ' 3-cycles if $\sigma \in A_n$, then $\sigma \sigma' \sigma^{-1} = \sigma'$
 then $A_n \times N \cong (3\text{-}cycles) = A_n$ two
4. If $k = 4$, σ is a 4-cycle or product of 2-cycles
 but 4-cycles are odd, so σ is product of two disjoint transpositions. By lemma all of those are conjugate in A_n
 so N contains all of them, since they together generate A_n, $N = A_n$
(5) \(k \geq 3 \), and \(\sigma \) has a cycle of length \(\geq 3 \) with \(\sigma(1) = 2, \sigma(2) = 3 \). \(\sigma \) moves 9,5 as well. Let \(\gamma = (345) \sigma (345)^{-1} \).

If \(\sigma(i) = 1 \), then \(i > 5 \). Then \(\sigma'(i) = i \) as well.

Also \((345)^{-1} \), and \((345)' = (543) \) only move 3,4,5 not i.

It follows that \(\gamma(i) = i \).

Also, \((345) \) fixes 2, \((345)^{-1} \) fixes 1, so \(\gamma(2) = 2 \).

Now \((345) \sigma (345)^{-1} \in N \) since \(N \) is normal, so \(\gamma \in N \) has smaller support that \(\sigma \).

But \(\gamma(3) = 4 \) so \(\gamma \neq \text{id} \), a contradiction.

(6) \(k \geq 5 \), \(\sigma \) odd of disjoint transposition, wlog.

\[\sigma = (12)(34)(56)(78) \ldots \] (at least 4 such since \(\sigma \) is even)

Define \(\gamma \) same way: \(\gamma = (345) \sigma (345)^{-1} \). Again \(\gamma \in N \)

Again \(\gamma \) fixes every fixed pt of \(\sigma \) and also 1,2.

But \(\gamma(3) = 8 \), \(\gamma(8) = 7 \) so \(\gamma \neq \text{id} \), again a contradiction.
Chapter 3: Group Actions

Def: An action \(\textbf{of} \) the group \(G \) on the set \(X \) is a binary operation \(\cdot : G \times X \rightarrow X \) s.t.,

(1) \(e_G \cdot x = x \) for all \(x \in X \)
(2) \(h \cdot (g \cdot x) = (hg) \cdot x \) for all \(h, g \in G, \ x \in X \).

Def: A \(G \)-set \(\textbf{is} \) a pair \((X, \cdot) \) where \(X \) is a set, \(\cdot \) is an action of \(G \) on \(X \).

Sometimes write \(GCX \)

Examples: (0) trivial action: any \(G, X \) set \(g \cdot x = x \)
(1) Key example: \(S_X \) acts on \(X \) by evaluation:
\[\sigma \cdot i \overset{\text{def}}{=} \sigma(i) \]
(\(\text{def} \ \sigma \) \(\in S_X \) was that \((\sigma \cdot x) (i) \overset{\text{def}}{=} \sigma(x(i)) \)
(2) \(F \) field, \(V \) vector space \(/F \), then scalar multiplication is an action \(\cdot : C V \times C V \)
(also \(GL(V) C V \))
\[\tau \cdot v = \tau(v) \]
(3) \(X \) set with "structure", \(\text{Aut}(X) = \{ \sigma \in X : \sigma \text{ is \textit{preserves the structure}} \} \)
- Eq. \(V \) vsp, \(G = \text{invertible} \) maps
- \(D_{2n} \) acting on \(X = \text{vertices of } \bigcirc \)
(4) $G \to \text{Aut}(G) = \{ f \in \text{Hom}(G, G) | f \text{ is an isomorphism}, f \text{ acts on } G \}.$

Problem 56: Induced actions: say G acts on $X, Y.$

- G acts on functions from X to $Y.$
- G acts on subsets of X: $g \cdot A = \{ g^{-1}a | a \in A \}.$

Regular action:

Claim: left multiplication is an action of G on itself:

Set $g \cdot x = gx$

New point of view: Fix $g \in G$ define $\sigma_g : G \to G$ by

$\sigma_g(x) = gx$

Lemma: $\sigma_g \in S_X$ for all $g \in G.$

More generally, let G act on $X,$ define $\sigma_g : X \to X$ by $\sigma_g(x) = g \cdot x$

Lemma: (1) $\sigma_g \in S_X$ for all $g \in G.$

(2) The map $g \mapsto \sigma_g$ is a homomorphism $G \to S_X.$

(3) The map $g \mapsto \text{actions of } g \text{ on } X$ $\to \text{Hom}(G, S_X)$ is a bijection.
First verify that \(\sigma_g \circ \sigma_h = \sigma_{gh} \).

Indeed:

\[
(\sigma_g \circ \sigma_h)(x) = \sigma_g(\sigma_h(x)) = \sigma_g(h \cdot x) = g \cdot (h \cdot x) = ((gh) \cdot x) = \sigma_{gh}(x)
\]

an action

(1) By definition of action, \(\sigma_e = \text{id}_\mathcal{X} \).

Now for any \(g \in G \), \(\sigma_g \circ \sigma_g^{-1} = \sigma_gg^{-1} = \sigma_e = \text{id}_\mathcal{X} \)

\[
\sigma_g^{-1} \circ \sigma_g = \sigma_g^{-1} \circ \sigma_g = \sigma_e = \text{id}_\mathcal{X}
\]

so \(\sigma_g \) is a bijection, i.e. \(\sigma_g \in S_\mathcal{X} \).

(2) We already checked \(\sigma_g \circ \sigma_h = \sigma_{gh} \).

(3) How many \(\text{actions} \) \(\rightarrow \) \(\text{homs} \)?

Need inverse. Given \(\sigma \in \text{Hom}(G, S_\mathcal{X}) \) define an action of \(G \) on \(\mathcal{X} \) by \(g \cdot x = (\sigma(g))(x) \)

Indeed \(e \cdot x = \sigma(e)(x) = \text{id}_\mathcal{X}(x) = x \)

\[
(g \cdot (h \cdot x)) = \sigma(g)(\sigma(h)(x)) = (\sigma(g) \circ \sigma(h))(x) = (\sigma(gh))(x) = \text{def of } \sigma \quad \sigma \text{ is a hom}
\]

= (gh) \cdot x.

Clean this is indeed the inverse map. ∎

Remark 1: I will not distinguish actions of \(G \) on \(\mathcal{X} \) and homs \(G \rightarrow S_\mathcal{X} \).
Remark 2: This lemma is an important source of homomorphisms, and of normal subgroups (kernels).

1st Payoff:

Thm: (Cayley 1878): Every group \(G \) is isomorphic to a subgroup of \(S_G \). In particular, every group of order \(n \) is isomorphic to a subgroup of \(S_n \).

Pf: Consider the left-regular action of \(G \) on itself. This gives a hom \(L_G: G \to S_G \)

\((L_G(g))(x) = gx \)

Say \(g \in \text{Ker}(L_G) \) then \(L_G(g) = \text{id}_G \) i.e. \(g \cdot x = x \) for all \(x \in G \)

So \(g = e_G \), i.e. \(\text{Ker} L_G = \{ e_G \} \) and \(L_G \) is injective, i.e. an isomorphism onto its image.

Example: Let \(p \) be prime. Then \(C_p \) embeds in \(S_n \) iff \(p \leq n \).

Pf: If \(n > p \), \(S_n \) contains a \(p \)-cycle, and if \(C_p \) embeds in \(S_n \) then by Lagrange \(p \mid n! \)

but if \(n < p \) all prime factors of \(n! \) are less than \(p \) so \(p \nmid n! \) and no embedding is possible.