Math 322, Lecture 8, 31 Oct 2017

Today: (1) Subgroups
(1) Coset spaces

Subgroups & generating sets

Lemma. The intersection of a (non-empty) family of subgroups is a subgroup.

Proof. Let \(\mathcal{H} \) be a set of subgroups of \(G \).

Let \(\mathcal{H} = \{ H \} \).
Then, \(e_G \in K \) for all \(K \in \mathcal{H} \) (they are subgroups), so \(e_G \in H \).
Also, if \(x, y \in H \) then, for all \(K \in \mathcal{H} \), \(x, y \in K \) so \(xy^{-1} \in K \), so \(xy^{-1} \in H \).

Definition. Given \(S \subset G \), the subgroup generated by \(S \) is the subgroup

\[
\langle S \rangle \overset{\text{def}}{=} \bigcap \{ H \subset G \mid S \subset H \}
\]

(note: \(G \) is a subgroup of \(G \) so RHS is non-empty)

Remark. Note that \(S \subseteq \langle S \rangle \), so \(\langle S \rangle \) is the smallest subgroup containing \(S \).

Definition. A word in \(S \) is an expression

\[
\prod_{i=1}^{r} x_i = x_1 x_2 \ldots x_r
\]

where \(x_i \in S \), \(\varepsilon_i \in \{ \pm 1 \} \).
Aside: let G be a p.p. S.C.G.

Set: let Cay (G, S) be the graph with vertex set G, edge set $\{(g, gs) \mid s \in S\}$.

S generates G ($\langle S \rangle = G$) iff Cay (G, S) is connected.

$diam(G) =$ maximum distance of two vertices

$$= \max_{g \in G} \min_{s \in S} 1w_G \left(g, ws \right)$$

Think of S as "efficient" if $diam(G)$ wrt S is small.

$CS: \text{diam} / |S_n| = \text{transp} \approx \log n$ (mergesort).

Open question: how large can $diam(S_n, S)$ get?

$\left(|S_n| = \log \#S_n \right)$

Conj. (Babai) $diam(S_n, S) \leq \left(\log \#S_n \right)^C$ (C fixed)

Best result (Helfgott-Seress) $\leq \exp \left(\log n \right)^4 \left(\log \log n \right)^C$
A word in \(\mathbb{N}, \mathbb{B} \) is something like: \(\varepsilon \).

By induction on \(n \), if \(w \) is a word in \(\mathbb{N} \) and \(\mathbb{N} \varepsilon \subset \mathbb{C} \), then \(w \varepsilon \).

Prop: \(\langle \mathbb{C} \rangle = \{ g \in G \mid g \text{ represented by a word in } \mathbb{C} \} \)

Pf: We just saw \(\text{RHS} \subset \text{LHS} \).

Conversely, \(\text{RHS} \) contains \(\mathbb{C} \) (as words of length 1) and is a subgp: if \(g_1, g_2 \in \text{RHS} \) are represented by words \(w_1, w_2 \), then \(g_1g_2 \) is represented by the concatenation \(w_1w_2 \), and \(g_1' \) is represented by word \(x_r' \cdot \ldots \cdot x_1' \) if \(g_1 = x_r \cdot \ldots \cdot x_1 \).

(Recall that \((g_1g_2)^{-1} = g_2^{-1}g_1^{-1} \)). Also, \(\text{RAS} \) is non-empty (take empty path).

Since \(\text{RHS} \) is a subgp containing \(\mathbb{C} \), it contains \(\text{LHS} \subset \langle \mathbb{C} \rangle \).

Example: Last time we defined \(\langle \varepsilon \rangle = \langle \varepsilon \rangle \).

Example: \(\mathbb{S}_3 = \langle \{ \text{transpositions} \} \rangle \)

\(\text{An} = \text{Subgp of } \mathbb{S}_n \), generated by 3-cycles:

\(\mathbb{D}_{2n} = \langle r, p \rangle \)

rotation, reflection.
Question: Say $S_G \subseteq G$, $S_H \subseteq H$ are generating sets. Does $G \times H$ generate $S_G \times S_H$?

Example: \mathbb{Z} is not free: any single element generates a copy of \mathbb{Z}, if $g + h \in S$, $\langle S \rangle = \mathbb{Z}^2$ then $gh = hg$.

\[\mathbb{Z} \not\cong \mathbb{Z}^2 \]

Coset space

Fix a group G, a subgroup H.

Define a relation $g \equiv_{L} g' \ (H) \iff g'g \in H \iff \exists h \in H : gh = g'$.

Lemma: This is an equivalence relation. The equivalence class of $g \in G$ is the set $g + H = \{ gh : h \in H \}$.

Proof:
- If $g'g \in H$ then $(g')^{-1}g = (g'g)^{-1} \in H$ so $g' \equiv_L g \ (H)$
- If $g'g \in H$, $(g')^{-1}g'' \in H$ then $g'g'' = (g'g')(g'g')^{-1} \in H$

So $g \equiv L g' \ (H) \land g' \equiv L g'' \ (H) \Rightarrow g \equiv L g'' \ (H)$

Remark: When H is normal, the equivalence classes are called the **left cosets of H in G**.

Remark: The right cosets Hg are the equivalence classes of relation $g \equiv R g' \ (H) \iff g'g^{-1} \in H$.

Def: Write G/H (say G mod H) for the coset space $G/\equiv_L H$.
Example \(\mathbb{Z}/n\mathbb{Z} \) \((G = \mathbb{Z}, \; H = n\mathbb{Z}) \) the \(\iff \) \((n) \mid (1) \)

Def: The index of \(H \) in \(G \) is the cardinality
\[\left[G : H \right] = \# G/H. \]

Example \(\left[\mathbb{Z} : n\mathbb{Z} \right] = n \)

Index measures how far \(H \) is from \(G \).

If \(G \) is commutative \(gH = \{ gh : h \in H \} = \{ hg : h \in H \} = Hg. \)

Thm ("Lagrange's thm") \(\# G = \# \left[G : H \right] \cdot \# H. \) \((H \) is a subgroup of \(G \))

\[|G| = \left[G : H \right] \cdot |H| \]

Cor: If \(G \) is finite then \(|H| \mid |G| \), and \(\left[G : H \right] = \frac{|G|}{|H|}. \)

Cor: If \(G \) is finite, \(g \in G \) of order \(k \) then \(k \mid |G| \).

Pf: Let \(R \subset G \) be a system of coset representatives for \(G/H \) - that is, a set containing exactly one element from each coset.

Then the function \(R \rightarrow G/H \) is a bijection, \(|R| = |G/H| = \left[G : H \right] \)

Let \(f : R \times H \rightarrow G \) be the function, \(f(rh) = rh. \)

\(f \) is injective: if \(f(rh) = f(r'h) \) we have \(rh = r'h' \)

then \(r^{-1}r' = h' (h')^{-1} \in H \) so \(r = r' \text{ (mod } H) \), so \(r = r' \)

then \(h = h' \) also \((r\bar{h} = r'h') \).

\(f \) is surjective: if \(g \in G \), then \(\exists r \in R \) \((R \text{ contains an element of each coset). Then } \exists ! r' \in H \) and \(g = r(r^{-1}g) \)

Conclude that \(|G| = |R| \cdot |H| = \left[G : H \right] \cdot |H| \)

(finite case, $\#G = \#H \cdot \#K$)

Restate: Consider G finite, $g \in G$, order k, then $k = \#\langle g \rangle | \#G$.

In particular, $g^k = e$

Remark: Taking inverse maps $gH \mapsto Hg^{-1}$

that is a bijection $G/H \leftrightarrow H \backslash G$.

Left cosets \leftrightarrow Right cosets

so index same.

Remark: It's a theorem of Philip Hall that if G is finite, G/H and $H \backslash G$ have a common system of representatives.

Example: Let p be prime. Then any group of order p

is cyclic, isomorphic to C_p.

For p^2, let $g \in G \cdot \langle e \rangle$. Order of g divides p^2, not p

so order of e is p, $\langle g \rangle = G$.