Math 322, Lecture 5, 21/9/2014

Last time: $S_X = \{ \sigma: X \rightarrow X \mid \sigma \text{ bijective} \}$

$S_n = S_{3,2,\ldots,n}$

r-cycle (i_1, i_2, \ldots, i_r) is the map $\rho(c) = \{ \begin{array}{ll}
 i_{j+1} & \text{if } c = i_j, \ j < r \\
 i_r & \text{if } i = i_j, \ j \neq r
\end{array}$

Every $\sigma \in S_n$ is of the form $\sigma = \prod K_j$, K_j disjoint cycles, unique up to reordering.

Proof: For $i, j \in \{1, 2, \ldots, n\}$ set $i \leftrightarrow j$ if $i = c^{k_j}(j)$ for some $k \in \mathbb{Z}$

Check:
1. is an equivalence relation
2. each class is σ-invariant: if $i \in$ class, $\sigma(i)$ also true
3. Define cycle σ by restricting σ to classes

Example: $(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7) \\
(6 \ 3 \ 2 \ 1 \ 5 \ 7 \ 4)$

Today:
1. sign of a permutation
2. linear groups

Odd and even permutations

Lemma: Every permutation is a product of 2-cycles ("transpositions")

[$\text{the transpositions generate } S_n$]
Pf: let \(\sigma \in S_n \) be a counterexample of minimal support.
\(\sigma \neq \text{id} \) (\(\text{id} = (1) \)) so \(\text{supp}(\sigma) \neq \emptyset \). Say \(i \in \text{supp}(\sigma) \)
Consider permutation \(\tau = (i \ \sigma(i)) \sigma \) (apply \(\sigma \), swap \(i, \sigma(i) \))
\(\neq \sigma(i) \) since \(i \in \text{supp}(\sigma) \)
If \(j \notin \text{supp}(\sigma) \) then \(j \neq i, j \neq \sigma(i) \) so \(\tau(j) = (i \ \sigma(i))(\sigma(j)) = (i \ \sigma(i))(j) = j \)
also, \(\tau(i) = (i \ \sigma(i))(\sigma(i)) = i \) so \(i \notin \text{supp}(\tau) \)
so \(\text{supp}(\tau) \subseteq \text{supp}(\sigma) \setminus \{i\} \)
so \(\tau \) is a product of transpositions: \(\tau = \prod \beta \).
Then \((i \ \sigma(i)) \cdot \sigma = \prod \beta \).
Then \((i \ \sigma(i))^2 \sigma = (i \ \sigma(i)) \cdot \prod \beta \)
\((\text{let } \beta = (i \ \sigma(i)) = 1 \) then let \(\tau = \beta \sigma \), for \(j \notin \text{supp}(\sigma) \), \(\tau(j) = j \)

PF: know \(\sigma \in S_n \) is a product of cycles enough to show each cycle is a product of transpositions.
By induction: \((i_1, \ldots, i_r) = (i_1, i_2) (i_2, i_3) (i_3, i_4) \cdots (i_{r-1}, i_r) \)

Def: The alternating group \(A_n \) is the set of \(n \)-elements that are the product of an even number of transpositions (those permutations are said to be "even")

Remark: If \(\sigma, \tau \in A_n \), so do \(\sigma \tau, \sigma^{-1} \) (concatenate or reverse even products keeps them even)
Lemma: Let $1 \leq k \leq n$ then in S_n

$$(a, a_k)(a, \ldots, a_n) = (a, \ldots, a_{k-1})(a_k \ldots a_n)$$

(if $k = 1$ or a_k is the identity)

$$(a, a_k)(a, \ldots, a_{k-1})(a_k \ldots a_n) = (a, \ldots, a_n)$$

Pf: 1st by direct evaluation

2nd follows by multiplying by (a, a_k) on left, using $(a, a_k)^2 = id$

Def: For $\sigma \in S_n$, let $\sigma = \prod_{j=1}^{t} k_j$ be the cycle decomposition of σ (add a 1-cycle for each fixed point)

Set $sgn(\sigma) = (-1)^{n-t}$ call it the sign of σ.

Key lemma: Let τ be a transposition. Then

$$sgn(\tau \sigma) = -sgn(\sigma)$$

Pf: Say $\tau = (a, a_k)$ either, $a, b a_k$ both in same cycle for τ or they are in different cycles (if only one, assume its k_1, if two assume its k_1, k_2)

Lem: previous lemma: in either case, # of cycles in $\tau \sigma$ changes by one

(in case 1, $\tau \sigma = (a, \ldots, a_{k-1})(a_k \ldots a_n)(k_2 k_3 \ldots k_t$)

2. $\tau \sigma = (a, \ldots, a_n \cdot k_3 k_4 \ldots k_t$)
Thm: For all \(\sigma, \tau \in S_n \), have \(\text{sgn}(\sigma \tau) = \text{sgn}(\sigma) \text{sgn}(\tau) \).

[Interpretation: map \(\text{sgn} : S_n \to \mathbb{Z}/2\mathbb{Z} \) respects multiplication.]

Pf: By lemma showed \(\text{sgn}(\tau \sigma) = \text{sgn}(\tau) \text{sgn}(\sigma) \) if \(\tau \) is a transposition.

Set \(H = \{ \tau \in S_n : \text{sgn}(\tau \sigma) = \text{sgn}(\tau) \text{sgn}(\sigma) \} \).

We know \(H \) contains all transpositions. Also, if \(\tau, \tau_1 \in H \) then \(\tau, \tau_1 \in H \) because for all \(\sigma \):

\[
\text{sgn}(\tau_1 \tau \sigma) = \text{sgn}(\tau_1 \tau_2 \sigma) = \text{sgn}(\tau_1) \text{sgn}(\tau_2 \sigma) = \uparrow \uparrow \text{sgn}(\tau_1) \text{sgn}(\tau_2) \text{sgn}(\sigma) = \text{sgn}(\tau_1 \tau_2) \text{sgn}(\sigma).
\]

But every element of \(S_n \) is a product of transpositions, so \(H = S_n \).

Cor.: Suppose \(\sigma = \prod_{j=1}^{S} \tau_j \), \(\tau_j \) are transpositions.

Then \(\text{sgn}(\sigma) = \text{sgn}(\prod_{j=1}^{S} \tau_j) = \prod_{j=1}^{S} \text{sgn}(\tau_j) = (-1)^S \).

So parity of \(S \) depends only on \(\sigma \).

Cor: \(\#A_n = \frac{1}{2} \#S_n \).

Pf: Let \(\tau \) be a transposition. Then \(\tau \) multiplies \(A_n \) by \(S_n \). \(A_n \) multiplies \(S_n \) by \(A_n \).

Eq: Saw that \(n \)-cycle has \(\text{sgn}(-1) \).

Show \(A_n \) is generated by \(3 \)-cycles (\(n \geq 3 \)).