Lior Silberman’s Math 322: Problem Set 9 (due 16/11/2017)

P1. In class we classified the groups of order 12, finding the isomorphism types $A_{12}, C_{12}, C_4 \times C_3, C_2 \times C_6, C_2 \rtimes S_6$. The dihedral group D_{12} is a group of order 12 – where does it fall in this classification?

P2. (Numerology) Let G be a group of order p^2q where p, q are prime.
 (a) Show that, unless $q \equiv 1 (p)$, G has a unique p-Sylow subgroup and isn’t simple.
 (b) Show that, unless $p^2 \equiv 1 (q)$, G has a unique q-Sylow subgroup and isn’t simple.
 (c) Show that if $q \equiv 1 (p)$ and $p^2 \equiv 1 (q)$ then $p = 2, q = 3$ and G isn’t simple.

Sylow’s Theorems

Write P_p for a p-Sylow subgroup of G.

1. Let G be a simple group of order $36 = 2^23^2$.
 RMK The idea of P2 shows that a group of order p^2q^2 isn’t simple unless $p^2q^2 = 36$.
 (a) Show that G acts non-trivially on a set of size 4.
 (b) Use the kernel of the action to show G isn’t simple after all.

2. Let G be a group of order $255 = 3 \cdot 5 \cdot 17$.
 (a) Show that $n_{17}(G) = 1$.
 (*b) Show that P_{17} is central in G.
 (*c) Show that $n_5(G) = 1$.
 (d) Show that P_5 is also central in G.
 (e) Show that $G \simeq C_3 \times C_5 \times C_{17} \simeq C_{255}$.

3. Let G be a group of order 140
 (a) Show that $G \simeq H \rtimes C_{35}$ where H is a group of order 4.
 (*b) Classify actions of C_4 on C_{35} and determine the isomorphism classes of groups of order 140 with $P_2 \simeq C_4$.
 (**c) Classify actions of V on C_{35} and determine the isomorphism classes of groups of order 140 with $P_2 \simeq V$.

4. Let G be a finite group, $P < G$ a Sylow subgroup. Show that $N_G(N_G(P)) = N_G(P)$ (hint: let $g \in N_G(N_G(P))$ and consider the subgroup gPg^{-1}).

5. Let G be a finite group of order n, and for each $p | n$ let P_p be a p-Sylow subgroup of G.
 (a) Show that $G = \bigcup_{p | n} P_p$.
 (b) Suppose that G_p has a unique p-Sylow subgroup for each p. Show that $G = \prod P_p$ (internal direct product).

(hint for 2b: conjugation gives a homomorphism $G \to \text{Aut}(P_{17})$).
(hint for 2c: let G act by conjugation on $\text{Syl}_5(G)$ and use part b).