Lior Silberman’s Math 322: Problem Set 8 (due 9/11/2017)

On group actions and homomorphisms

1. Let the group G act on the set X.

 DEF The *kernel* of the action is the normal subgroup $K = \{ g \in G \mid \forall x \in X : g \cdot x = x \}$.

 PRAC K is the kernel of the associated homomorphism $G \to S_X$, hence $K \triangleleft G$ indeed.

 (a) Construct an action of G/K on X “induced” from the action of G.

 DEF An action is called *faithful* if the kernel is trivial.

 (b) Show that the action of G/K on X is faithful.

 SUPP Show that this realizes G/K as a subgroup of S_X.

 (c) Suppose G acts non-trivially on a set of size n. Show that G has a proper normal subgroup of index at most $n!$.

 (*d) Show that an infinite simple group has no proper subgroups of finite index.

*2. Let G be a group of finite order n, and let p be the smallest prime divisor of n. Let $M < G$ be a subgroup of index p. Show that M is normal.

 RMK In particular, this applies when G is a finite p-group.

Automorphisms of groups and semidirect products

Recall that $\text{Aut}(H)$ is the group of isomorphisms $H \to H$.

*3. Let H,N be groups, and let $\varphi \in \text{Hom}(H,\text{Aut}(N))$ be an action of H on N by automorphisms. We write φ_h rather than $\varphi(h)$ for the automorphism given by $h \in H$, so result of h acting on n (the result of applying the automorphism $\varphi(h)$ to n) will be written $\varphi_h(n)$. That φ is a homomorphism is the statement that $\varphi_h \circ \varphi_{h'} = \varphi_{hh'}$.

 DEF The (external) *semidirect product* of H and N along φ is the operation

 $$(h_1,n_1) \cdot (h_2,n_2) = \left(h_1h_2, \left(\varphi_{h_2}^{-1}(n_1)\right)n_2\right)$$

 on the set $H \times N$. We denote this group $H \ltimes \varphi N$.

 PRAC Verify that when φ is the trivial homomorphism ($\varphi_h = \text{id}$ for all $h \in H$), this is the ordinary direct product.

 (a) Show that the semidirect product is, indeed, a group.

 (b) Show that $f_H : H \to H \ltimes \varphi N$ given by $f(h) = (h,e)$, $f_N : N \to H \ltimes \varphi N$ given by $f(n) = (e,n)$ and $\pi : H \ltimes \varphi N \to H$ given by $\pi(h,n) = h$ are group homomorphisms.

 (c) Show that $\tilde{H} = f_H(H)$ and $\tilde{N} = f_N(N)$ are subgroups with \tilde{N} normal. Show that for $\tilde{h} = (h,e)$ and $\tilde{n} = (e,n)$ we have $\tilde{h}\tilde{n}\tilde{h}^{-1} = (\varphi(h))(n)$.

 (d) Show that $H \ltimes \varphi N$ is the internal semidirect product of its subgroups \tilde{H}, \tilde{N}.
4. (Concrete 3(b),(c),(d)) Let $H = \mathbb{R}^\times$ act on $N = \mathbb{R}$ by multiplication (so $\varphi_h(n) = hn$). Show $H \rtimes \varphi N$ is isomorphic to the subgroup $P = \left\{ \begin{pmatrix} h & n \\ 0 & 1 \end{pmatrix} \mid h \in \mathbb{R}^\times, n \in \mathbb{R} \right\}$ of $\text{GL}_2(\mathbb{R})$.

SUPP Do the same with $H = (\mathbb{Z}/n\mathbb{Z})^\times$, $N = \mathbb{Z}/n\mathbb{Z}$. Now P is a finite group.

SUPP Same with $H = \text{GL}_d(\mathbb{R})$, $N = \mathbb{R}^d$, $P = \left\{ \begin{pmatrix} h & n \\ 0 & 1 \end{pmatrix} \mid h \in \text{GL}_d(\mathbb{R}), n \in \mathbb{R}^d \right\} < \text{GL}_{d+1}(\mathbb{R})$.

5. (Cyclic groups)
 (a) Let A be a group. Show that mapping $f \in \text{Hom}(C_n, A)$ to $f([1])a$ gives a bijection between $\text{Hom}(C_n, A)$ and the set of $a \in A$ of order dividing n.
 (b) Write f_a for the homomorphism such that $f([1]) = a$. When $A = C_n = (\mathbb{Z}/n\mathbb{Z}, +)$ show that $f_a \circ f_b = f_{ab}$ (by is multiplication mod n) and hence that $\text{Aut}(C_n) \cong (\mathbb{Z}/n\mathbb{Z})^\times$.

RMK You’ve just done a fancy version of problem 4 of PS1

Extra Credit

6. The two parts complete problem 3. For these let $\varphi \in \text{Hom}(H, \text{Aut}(N))$.
 (a) For $\alpha \in \text{Aut}(H)$ define $\psi: H \to \text{Aut}(N)$ by $\psi = \varphi \circ \alpha$ (that is $\psi_h = \varphi_{\alpha(h)}$). Show that $F(h, n) = (\alpha^{-1}(h), n)$ gives an isomorphism $F: H \rtimes \varphi N \to H \rtimes \psi N$.
 (b) For $\beta \in \text{Aut}(N)$ define $\psi: H \to \text{Aut}(N)$ by $\psi_h = \beta \circ \varphi_h \circ \beta^{-1}$ (this is conjugation in $\text{Aut}(N)$!). Show that $H \rtimes \varphi N \cong H \rtimes \psi N$.
 (c) Let $a, b \in \text{Aut}(N)$ generate the same cyclic subgroup, and let $f_a, f_b \in \text{Hom}(C_n, \text{Aut}(N))$ be the maps from 5(b). Show that $C_n \rtimes f_a N \cong C_n \rtimes f_b N$

RMK From (b),(c) we conclude and conclude that semidirect products $C_n \rtimes N$ are determined by conjugacy classes of subgroups of $\text{Aut}(N)$ which are cyclic of order dividing n.

96
Supplementary problems

A. We show that \((\mathbb{Z}/p\mathbb{Z})^\times \simeq C_{p-1}\) so that \(\text{Aut}(C_p) \simeq C_{p-1}\).

(a) Let \(F\) be a field. Show that \(F^\times\) has at most \(d\) elements of order dividing \(d\) (hint: a polynomial of degree \(d\) over a field has at most \(d\) roots).

(b) Let \(H < F^\times\) be a finite group. Show that \(H\) is cyclic.

(c) Show that \(\text{Aut}(C_p) \simeq C_{p-1}\).

Solving the following problem involves many parts of the course.

B. Let \(G\) be a group of order 8.

(a) Suppose \(G\) is commutative. Show that \(G\) is isomorphic to one of \(C_8, C_4 \times C_2, C_2 \times C_2 \times C_2\).

(b) Suppose \(G\) is non-commutative. Show that there is \(a \in G\) of order 4 and let \(H = \langle a \rangle\).

(c) Show that \(a \notin Z(G)\) but \(a^2 \in Z(G)\).

(d) Suppose there is \(b \in G - H\) of order 2. Show that \(G \simeq D_8\) (hint: \(bab^{-1} \in \{a, a^3\}\) but can’t be \(a\)).

(e) Let \(b \in G - H\) have order 4. Show that \(bab^{-1} = a^3\) and that \(a^2 = b^2 = (ab)^2\).

(f) Setting \(c = ab, -1 = a^2\) and \(-g = (-1)g\) show that \(G = \{\pm 1, \pm a, \pm b, \pm c\}\) with the multiplication rule \(ab = c, ba = -c, bc = a, cb = -a, ca = b, ac = -b\).

(g) Show that the set in (f) with the indicated operation is indeed a group.

DEF The group of (f),(g) is called the quaternions and indicated by \(Q\).

C. Let \(G\) be a group (especially infinite).

DEF Let \(X\) be a set. A chain \(C \subset P(X)\) is a set of subsets of \(X\) such that if \(A, B \in C\) then either \(A \subset B\) or \(B \subset A\).

(a) Show that if \(C\) is a chain then for every finite subset \(\{A_i\}_{i=1}^n \subset C\) there is \(B \in C\) such that \(A_i \subset B\) for all \(i\).

(b) Suppose \(C\) is a non-empty chain of subgroups of a group \(G\). Show that the union \(\bigcup C\) is a subgroup of \(G\) containing all \(A \in cC\).

(c) Suppose \(C\) is a chain of \(p\)-subgroups of \(G\). Show that \(\bigcup C\) is a \(p\)-group as well.

(*d) Use Zorn’s Lemma to show that every group has maximal \(p\)-subgroups (\(p\)-subgroups which are not properly contained in other \(p\)-subgroups), in fact that every \(p\)-subgroup is contained in a maximal one.

RMK When \(G\) is infinite, it does not follow that these maximal subgroups are all conjugate.