Math 322: Problem Set 7 (due 2/11/2015)

Practice problem

P1. Let G commutative group where every element has order dividing p.
 (a) Endow G with the structure of a vector space over \mathbb{F}_p.
 (b) Show that $\dim_{\mathbb{F}_p} G = k$ iff $\#G = p^k$ iff $G \simeq (C_p)^k$.
 (c) Show that for any $X \subset G$, we have $\langle X \rangle = \text{Span}_{\mathbb{F}_p} X$.
 (d) Show that any generating set of C_2^k consists of at least $k = \log_2 (\#C_2^k)$ elements.

General theory

Fix a group G.

*1. Suppose G is finite and let H be a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).

2. (Correspondence Theorem) Let $f \in \text{Hom}(G,H)$, and let $K = \text{Ker}(f)$.
 (a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of $\text{Im}(f) = f(G)$.
 (b) Show that the bijection respects inclusions, indices and normality (if $K < M_1, M_2 < G$ then $M_1 < M_2$ iff $f(M_1) < f(M_2)$, in which case $[M_2 : M_1] = [f(M_2) : f(M_1)]$, and $M_1 \triangleleft M_2$ iff $f(M_1) \triangleleft f(M_2)$).

3. Let $X, Y \subset G$ and suppose that $K = \langle X \rangle$ is normal in G. Let $q : G \to G/K$ be the quotient map. Show that $G = \langle X \cup Y \rangle$ iff $G/K = \langle q(Y) \rangle$.

p-groups

4. Let $\mathbb{Z} \left[\frac{1}{p} \right] = \left\{ \frac{a}{p^b} \in \mathbb{Q} \mid a \in \mathbb{Z}, k \geq 0 \right\} < (\mathbb{Q}, +)$, and note that $\mathbb{Z} \triangleleft \mathbb{Z} \left[\frac{1}{p} \right]$ (why?).
 PRAC Verify that $\mathbb{Z} \left[\frac{1}{p} \right]$ is indeed a subgroup.
 (a) Show that $G = \mathbb{Z} \left[\frac{1}{p} \right] / \mathbb{Z}$ is a p-group.
 (b) Show that for every $x \in G$ there is $y \in G$ with $y^p = x$ (warning: what does y^p mean?)
 SUPP Show that every proper subgroup of G is finite and cyclic. Conversely, for every k there is a unique subgroup isomorphic to p^k.

*5. Let G be a finite p-group, and let $H \triangleleft G$. Show that if H is non-trivial then so is $H \cap Z(G)$.

Extra credit

*6. If $|G| = p^n$, show for each $0 \leq k \leq n$ that G contains a normal subgroup of order p^k.

*7. For G let $G^p = \langle \{g^p \mid g \in G \} \rangle$ be the subgroup generated by the pth powers.
 (a) Show $G^p < G$ and that every element of G/G^p has order dividing p.
 (b) Suppose G is a finite commutative p-group. Show that $X \subset G$ generates G iff its image in G/G^p generates that group. In particular, a minimal generating set has cardinality $\dim_{\mathbb{F}_p} G/G^p = \log_p |G : G^p|$.

RMK We will see later that in any finite p-group, X generates G iff its image generates $G/G'G^p$ where G' is the derived (commutator) subgroup.
Supplement: Group actions

A. Fix an action \cdot of the group G on the set X.
 (a) Let $Y \subset X$ be G-invariant in that $gY = Y$. Show that the restriction $\cdot |_{G \times Y}$ defines an action of G on Y.
 (b) Let $H < G$. Show that the restriction $\cdot |_{H \times X}$ defines an action of H on X.
 (c) Show that every G-orbit in X is a union of H-orbits.
 (d) Show that every G-orbit is the union of at most $[G : H]$ H-orbits.

B. Let the finite group G act on the finite set X.
 DEF For $g \in G$ its set of fixed points is $\text{Fix}(g) = \{x \in X \mid g \cdot x = x\}$. The stabilizer of $x \in X$ is $\text{Stab}_G(x) = \{g \in G \mid g \cdot x = x\}$.
 (a) Enumerating the elements of the set $\{(g, x) \in G \times X \mid g \cdot x = x\}$ in two different ways, show that
 \[\sum_{g \in G} \# \text{Fix}(g) = \sum_{x \in X} \# \text{Stab}_G(x). \]
 (b) Using the conjugacy of point stabilizers in an orbit, deduce that
 \[\sum_{g \in G} \# \text{Fix}(g) = \sum_{O \in G \backslash X} \# G \]
 and hence the Lemma that is not Burnside’s: the number of orbits is exactly the average number of fixed points,
 \[\# G \backslash X = \frac{1}{\# G} \sum_{g \in G} \# \text{Fix}(g). \]
 (c) Example: suppose we’d like to colour each vertex of a cube by one of four different colours, with two colourings considered equivalent if they are obtained from each other by a rotation of the cube. How many colourings are there, up to equivalence?