Practice Problems

P1 Let G be a group with $|G| = 2$. Show that $G = \{e, g\}$ with $g \cdot g = e$ (hint: consider the multiplication table). Show that $G \simeq C_2$ (that is, find an isomorphism $C_2 \to G$).

P2 Let G be a group. Give a bijection between $\{H < G \mid \#H = 2\}$ and $\{g \in G \mid g^2 = e, g \neq e\}$.

P3. Are these groups? In each case either prove the group axioms or show that an axiom fails.
(a) The non-negative real numbers with the operation $x \ast y = \max \{x, y\}$.
(b) $\mathbb{R} \setminus \{-1\}$ with the operation $x \ast y = x + y + xy$.

P4 (Basics of groups and homomorphisms) Fix groups G, H, K and let $f \in \text{Hom}(G, H)$.
(a) Given also $g \in \text{Hom}(H, K)$, show that $g \circ f \in \text{Hom}(G, K)$.
(b) Suppose f is bijective. Then $f^{-1} : H \to G$ is a homomorphism.

Groups and Homomorphisms

1. Let G be a group, and let $(A, +)$ be an abelian group. For $f, g \in \text{Hom}(G, A)$ and $x \in G$ define $(f + g)(x) = f(x) + g(x)$ (on the right this is addition in A).
(a) Show that $f + g \in \text{Hom}(G, A)$.
(b) Show that $(\text{Hom}(G, A), +)$ is an abelian group.
(*c) Let G be a group, and let $\text{id} : G \to G$ be the identity homomorphism. Define $f : G \to G$ by $f(x) = (\text{id}(x))(\text{id}(x)) = x \cdot x = x^2$. Suppose that $f \in \text{Hom}(G, G)$. Show that G is commutative.

2. (External Direct products) Let G, H be groups.
(a) On the product set $G \times H$ define an operation by $(g, h) \cdot (g', h') = (g g', h h')$. Show that $(G \times H, \cdot)$ is a group.
DEF this is called the (external) direct product of G, H.
(b) Let $\tilde{G} = \{(g, e_H) \mid g \in G\}$ and $\tilde{H} = \{(e_G, h) \mid h \in H\}$. Show that \tilde{G}, \tilde{H} are subgroups of $G \times H$ and that $\tilde{G} \cap \tilde{H} = \{e_G \times e_H\}$.
SUPP Show that \tilde{G}, \tilde{H} are isomorphic to G, H respectively.
(c) Show that for any $x = (g, h) \in G \times H$ we have $x \tilde{G} x^{-1} = \tilde{G}$ and $x \tilde{H} x^{-1} = \tilde{H}$ (the notation means $x \tilde{G} x^{-1} = \{gx^{-1} \mid g \in \tilde{G}\}$).
EXAMPLE The Chinese remainder theorem shows that $C_n \times C_m \simeq C_{nm}$ if gcd $(n, m) = 1$.

3. Products with more than two factors can be defined recursively, or as sets of k-tuples.
SUPP Find “natural” isomorphisms $G \times H \simeq H \times G$ and $(G \times H) \times K \simeq G \times (H \times K)$. We therefore write products without regard to the order of the factors.
DEF Write G^k for the k-fold product of groups isomorphic to G.
(a) Show that every non-identity element of C_2^k has order 2.
(b) Show that $C_3 \times C_3 \ncong C_9$.

4. The Klein group or the four-group is the group $V \simeq C_2 \times C_2$.
PRAC Check that $(\mathbb{Z}/12\mathbb{Z})^\times \simeq V$ and that $(\mathbb{Z}/8\mathbb{Z})^\times \simeq V$.
(a) Write a multiplication table for V, and show that V is not isomorphic to C_4.
(b) Show that $V = H_1 \cup H_2 \cup H_3$ where $H_i \subset V$ are subgroups isomorphic to C_2.

45
(c) Let G be a group of order 4. Show that G is isomorphic to either C_4 or to $C_2 \times C_2$.

5. Let G be a group, and let $H, K < G$ be subgroups and suppose that $H \cup K$ is a subgroup as well. Show that $H \subset K$ or $K \subset H$.
Extra credit

6. Show that, for each \(d \mid n \), \(\mathbb{Z}/n\mathbb{Z} \) has a unique subgroup of order (=size) \(d \) (and that the subgroup is cyclic).

7**. Let \(G \) be a finite group of order \(n \), and suppose that for each \(d \mid n \) \(G \) has at most one subgroup of order \(d \). Show that \(G \) is cyclic.

Supplementary Problems

A. Let \(G \) be the isometry group of the Euclidean plane: \(G = \{ f : \mathbb{R}^n \to \mathbb{R}^n \mid \| f(x) - f(y) \| = \| x - y \| \} \).
(a) Show that every \(f \in G \) is a bijection and that \(G \) is closed under composition and inverse.
(b) For \(a \in \mathbb{R}^n \) set \(t_a(x) = x + a \). Show that \(t_a \in G \), and that \(a \mapsto t_a \) is an injective group homomorphism \((\mathbb{R}^n, +) \to G\).

DEF Call the image the subgroup of translations and denote it by \(T \).
(c) Let \(K = \{ g \in G \mid g(0) = 0 \} \). Show that \(K \leq G \) is a subgroup (we usually denote it \(O(n) \) and call it the orthogonal group).

DEF This is called the orthogonal group and consists of rotations and reflections.

FACT \(K \) acts on \(\mathbb{R}^n \) by linear maps.
(d) Show \(\forall g \in G \exists t \in T : g0 = t0 \), and hence that \(t^{-1}g \in K \). Conclude that \(G = TK \).
(e) Show that every \(x \in G \) has a unique representation in the form \(g = tk, t \in T, k \in K \) (hint: what is \(T \cap K \)?)
(f) Show that \(K \) normalizes \(T \): if \(k \in K, t \in T \) we have \(ktk^{-1} \in T \) (hint: use the linearity of \(k \)).
(g) Show that \(T \triangleleft G \): for every \(g \in G \) we have \(gTg^{-1} = T \).

RMK We have shown that \(G \) is the semidirect product \(G = K \rtimes T \).

B. Let \(X \) be a set of size at least 2, and fix \(e \in X \). Define \(*: X \times X \to X \) by \(x * y = y \).
(a) Show that \(* \) is an associative operation and that \(e \) is a left identity.
(b) Show that every \(x \in X \) has a right inverse: an element \(\bar{x} \) such that \(x * \bar{x} = e \).
(c) Show that \((X, *) \) is not a group.

C. Let \(\{ G_i \}_{i \in I} \) be groups. On the cartesian product \(\prod_i G_i \) define an operation by

\[
(g \cdot h)_i = g_ih_i
\]

(that is, by co-ordinatewise multiplication).
(a) Show that \((\prod_i G_i, \cdot) \) is a group.

DEF This is called the (external) direct product of the \(G_i \).
(b) Let \(\pi_j : \prod_i G_i \to G_j \) be projection on the \(j \)th coordinate. Show that \(\pi_j \in \text{Hom}(\prod_i G_i, G_j) \).
(c) (Universal property) Let \(H \) be any group, and suppose given for each \(i \) a homomorphism \(f_i \in \text{Hom}(H, G_i) \). Show that there is a unique homomorphism \(f : H \to \prod_i G_i \) such that for all \(i \), \(\pi_i \circ f = f_i \).

(**d) An abstract direct product of the groups \(G_i \) is a pair \((G, \{ q_i \}_{i \in I}) \) where \(G \) is a group, \(q_i : G \to G_i \) are homomorphisms, and the property of (c) holds. Suppose that \(G, G' \) are both abstract direct products of the same family \(\{ G_i \}_{i \in I} \). Show that \(G, G' \) are isomorphic (hint: the system \(\{ q_i \} \) and the universal property of \(G' \) give a map \(\varphi : G \to G' \), and the same idea gives a map \(\psi : G' \to G \). To see that the composition is the identity compare for example \(q_i \circ \psi \circ \varphi, q_i \circ \text{id}_G \) and use the uniqueness of (c).
D. Let V, W be two vector spaces over a field F. On the set of pairs $V \times W = \{(v, w) \mid v \in V, w \in W\}$ define $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$ and $a \cdot (v_1, w_1) = (a \cdot v_1, a \cdot w_1)$.

(a) Show that this endows $V \times W$ with the structure of a vector space. This is called the external direct sum of V, W and denote it $V \oplus W$.

(b) Generalize the construction to an infinite family of vector spaces as in problem C(a).

(*c) State a universal property analogous to that of C(c), C(d) and prove the analogous results.

E. (Supplement to P3) Let $S^1 \subset \mathbb{R}^2$ be the unit circle. Then $f : [0, 2\pi) \to S^1$ given by $f(\theta) = (\cos \theta, \sin \theta)$ is continuous, 1-1 and onto but its inverse is not continuous.