Lior Silberman's Math 312: Problem Set 4 (due 6/6/18)

Multiplicative Order

- 1. Let *n* be a pseudoprime to base 2 (recall that this means $2^{n-1} \equiv 1(n)$). Show that $m = 2^n 1$ is also a pseudoprime to base 2. *Hint*: Show that n|m-1 and use the fact that you know the order of 2 mod *m*.
- *2. Let *p* be a prime divisor of the *n*th Fermat number $F_n = 2^{2^n} + 1$.
 - (a) Find the order of $2 \mod p$.
 - (b) Show that $p \equiv 1 (2^{n+1})$.
 - (c) Show that for any $a \ge 1$ there are infinitely many primes *p* for which the order of 2 mod *p* is divisible by 2^a .
 - RMK Note that (b) simplifies the search for prime divisors of Fermat numbers. We will later show that $p \equiv 1 (2^{n+2})$ holds.
- 3. Elements of order 2 mod *m*.
 - (a) Let *p* be odd, and let $k \ge 1$. Show that the congruence $x^2 \equiv 1 (p^k)$ has only the two obvious solutions $x \equiv \pm 1 (p^k)$.
 - *Hint*: Can both x 1, x + 1 be powers of p?
 - (*b) Let *n* be an odd number, divisible by exactly *r* distinct primes. Set up a bijection between congruence classes mod *n* satisfying $x^2 \equiv 1$ (*n*) and functions $f \in \{\pm 1\}^r$. Conclude that there are precisely 2^r congruence classes mod *n* which solve the equation.
- 4. Using Fermat's Little Theorem, show that for all integers n, $30|n^9 n$. *Hint*: For each prime p|30 show that $n^p - n|n^9 - n$ as polynomials.

Wilson's Theorem

- 5. We will show that if $n \ge 6$ is composite then $(n-1)! \equiv 0(n)$.
 - (a) (The easy case) Assume first that *n* is divisible by at least two distinct primes, that is that $n = \prod_{j=1}^{r} p_j^{k_j}$ for some distinct primes p_j where $k_j \ge 1$ for all *j* and $r \ge 2$. Show that $(n-1)! \equiv 0(n)$.

Hint: It is enough to show the congruence mod each $p_j^{k_j}$ separately. Why is (n-1)! divisible by $p_j^{k_j}$?

- (b) Let *p* be prime and let $k \ge 3$. Show that $p^k | (p^k 1)!$ *Hint*: Find some powers of *p* dividing the factorial.
- (c) Let $p \ge 3$ be prime. Show that $p^2 | (p^2 1)!$ *Hint*: Now you need to consider multiples of p as well.
- RMK Note that $3! \neq 0(4)$. Ensure that your solution to (c) used the fact that $p \neq 2$ at some point!

The Euler Function and RSA

Recall that $\phi(m) = \#\{1 \le a \le m \mid (a,m) = 1\}$, and that for *p* prime $\phi(p) = p - 1$.

- 6. Explicit calculations.
 - (a) Calculate $\phi(4), \phi(9), \phi(12), \phi(15)$.
 - (b) Show that $\phi(12) = \phi(3)\phi(4)$ and $\phi(15) = \phi(3)\phi(5)$ but that $\phi(4) \neq \phi(2) \cdot \phi(2)$, $\phi(9) \neq \phi(3) \cdot \phi(3)$.
- 7. Let p,q be distinct primes and let m = pq.
 - (a) Show that there are p + q 1 integers $1 \le a \le m$ which are not relatively prime to *m*. *Hint*: What are the possible values of gcd(a,m)? For which *a* do they occur?
 - (b) Show that $\phi(pq) = (p-1)(q-1)$.
 - RMK This means in particular that $\phi(pq) = \phi(p)\phi(q)$.
 - (c) Give a formula for p + q in terms of $m, \phi(m)$.
 - SUPP Show how to factor *m* given $m, \phi(m)$.
- 8. Fix an integer *m* and two positive integers *d*, *e* so that $de \equiv 1 (\phi(m))$. Define functions *E*, *D* by $E(x) = x^e \mod m$ and $D(y) = y^d \mod m$ (in other words, raise to the appropriate power and keep remainder mod *m*).
 - (a) Let $M = \{1 \le a \le m \mid (a, m) = 1\}$ be the set of invertible residues ($\phi(m)$ is the size of this set). Show that both D, E map the set M into itself.
 - (b) Show that for any $x, y \in M$, D(E(x)) = x and E(D(y)) = y. *Hint:* Euler's Theorem.

Supplementary problems (not for submission)

A. (The binomial formula) Prove by induction on $n \ge 0$ that for all x, y,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

- B. Let *p* be an odd prime.
 - (a) Show that $(p-1)! \equiv (-1)^{\frac{p-1}{2}} \left(\left(\frac{p-1}{2} \right)! \right)^2 (p)$. Conclude that if $p \equiv 1$ (4) then there is $a \in \mathbb{Z}$ such that $a^2 \equiv -1$ (p).
 - (b) Conversely, assume that $a^2 \equiv -1(p)$ for some integer *a*. Show that the order of *a* mod *p* is exactly 4 and conclude that $p \equiv 1(4)$.
- C. Let *p* be a prime and let $0 \le k < p$. Show that $\binom{p-1}{k} \equiv (-1)^k (p)$.