Lior Silberman's Math 312: Problem Set 4 (due 6/6/18)

Multiplicative Order

1. Let n be a pseudoprime to base 2 (recall that this means $2^{n-1} \equiv 1(n)$). Show that $m=2^{n}-1$ is also a pseudoprime to base 2 .
Hint: Show that $n \mid m-1$ and use the fact that you know the order of $2 \bmod m$.
*2. Let p be a prime divisor of the nth Fermat number $F_{n}=2^{2^{n}}+1$.
(a) Find the order of $2 \bmod p$.
(b) Show that $p \equiv 1\left(2^{n+1}\right)$.
(c) Show that for any $a \geq 1$ there are infinitely many primes p for which the order of $2 \bmod p$ is divisible by 2^{a}.
RMK Note that (b) simplifies the search for prime divisors of Fermat numbers. We will later show that $p \equiv 1\left(2^{n+2}\right)$ holds.
2. Elements of order $2 \bmod m$.
(a) Let p be odd, and let $k \geq 1$. Show that the congruence $x^{2} \equiv 1\left(p^{k}\right)$ has only the two obvious solutions $x \equiv \pm 1\left(p^{k}\right)$.
Hint: Can both $x-1, x+1$ be powers of p ?
(*b) Let n be an odd number, divisible by exactly r distinct primes. Set up a bijection between congruence classes mod n satisfying $x^{2} \equiv 1(n)$ and functions $f \in\{ \pm 1\}^{r}$. Conclude that there are precisely 2^{r} congruence classes $\bmod n$ which solve the equation.
3. Using Fermat's Little Theorem, show that for all integers $n, 30 \mid n^{9}-n$.

Hint: For each prime $p \mid 30$ show that $n^{p}-n \mid n^{9}-n$ as polynomials.

Wilson's Theorem

5. We will show that if $n \geq 6$ is composite then $(n-1)!\equiv 0(n)$.
(a) (The easy case) Assume first that n is divisible by at least two distinct primes, that is that $n=\prod_{j=1}^{r} p_{j}^{k_{j}}$ for some distinct primes p_{j} where $k_{j} \geq 1$ for all j and $r \geq 2$. Show that $(n-1)!\equiv 0(n)$.
Hint: It is enough to show the congruence mod each $p_{j}^{k_{j}}$ separately. Why is $(n-1)$! divisible by $p_{j}^{k_{j}}$?
(b) Let p be prime and let $k \geq 3$. Show that $p^{k} \mid\left(p^{k}-1\right)$!

Hint: Find some powers of p dividing the factorial.
(c) Let $p \geq 3$ be prime. Show that $p^{2} \mid\left(p^{2}-1\right)$!

Hint: Now you need to consider multiples of p as well.
RMK Note that $3!\not \equiv 0(4)$. Ensure that your solution to (c) used the fact that $p \neq 2$ at some point!

The Euler Function and RSA

Recall that $\phi(m)=\#\{1 \leq a \leq m \mid(a, m)=1\}$, and that for p prime $\phi(p)=p-1$.
6. Explicit calculations.
(a) Calculate $\phi(4), \phi(9), \phi(12), \phi(15)$.
(b) Show that $\phi(12)=\phi(3) \phi(4)$ and $\phi(15)=\phi(3) \phi(5)$ but that $\phi(4) \neq \phi(2) \cdot \phi(2), \phi(9) \neq$ $\phi(3) \cdot \phi(3)$.
7. Let p, q be distinct primes and let $m=p q$.
(a) Show that there are $p+q-1$ integers $1 \leq a \leq m$ which are not relatively prime to m.

Hint: What are the possible values of $\operatorname{gcd}(a, m)$? For which a do they occur?
(b) Show that $\phi(p q)=(p-1)(q-1)$.

RMK This means in particular that $\phi(p q)=\phi(p) \phi(q)$.
(c) Give a formula for $p+q$ in terms of $m, \phi(m)$.

SUPP Show how to factor m given $m, \phi(m)$.
8. Fix an integer m and two positive integers d, e so that $d e \equiv 1(\phi(m))$. Define functions E, D by $E(x)=x^{e} \bmod m$ and $D(y)=y^{d} \bmod m$ (in other words, raise to the appropriate power and keep remainder $\bmod m$).
(a) Let $M=\{1 \leq a \leq m \mid(a, m)=1\}$ be the set of invertible residues $(\phi(m)$ is the size of this set). Show that both D, E map the set M into itself.
(b) Show that for any $x, y \in M, D(E(x))=x$ and $E(D(y))=y$.

Hint: Euler's Theorem.

Supplementary problems (not for submission)

A. (The binomial formula) Prove by induction on $n \geq 0$ that for all x, y,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

B. Let p be an odd prime.
(a) Show that $(p-1)!\equiv(-1)^{\frac{p-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right)^{2}(p)$. Conclude that if $p \equiv 1(4)$ then there is $a \in \mathbb{Z}$ such that $a^{2} \equiv-1(p)$.
(b) Conversely, assume that $a^{2} \equiv-1(p)$ for some integer a. Show that the order of $a \bmod p$ is exactly 4 and conclude that $p \equiv 1$ (4).
C. Let p be a prime and let $0 \leq k<p$. Show that $\binom{p-1}{k} \equiv(-1)^{k}(p)$.

