Lior Silberman's Math 312: Problem Set 3 (due 31/5/11)

Calculation

1. (Dec 2005 final exam)
(a) Show that $3^{6} \equiv 1(7)$

Hint: Calculate 3^{2} or $3^{3} \bmod 7$ first.
(b) Let $a \equiv b(6)$. Show that $3^{a} \equiv 3^{b}(7)$.

Hint: What can you say about $3^{|a-b|}$? Problem 8 may be useful.
(c) Today is Thursday. What day will it be $10^{200,000,000,000}$ days from now?
2. (squares mod small numbers)
(a) For each $m=3,4$ find all residues $0 \leq a<m$ which are square $\bmod m$ (in other words for which there is an integer solution to $x^{2} \equiv a(m)$).
Hint: Just try all possible values of x.
(b) Find an integer x such that $x^{2} \equiv-1(5)$.
3. Find all solutions to: $15 x \equiv 9(25)$; also to $2 x+4 y \equiv 6(8)$.
4. If eggs are removed from a basket $2,3,4,5,6$ at a time, $1,2,3,4,5$ eggs remain, respectively. If eggs are removed 7 at a time, no eggs remain. What is the least possible number of eggs in the basket?
Hint: Note that -1 satisfies the congruence conditions modulu $2,3,4,5,6$ hence mod their LCM.

Problems

5. Powers and irrationals
(a) Let $n=\prod_{p} p^{e_{p}}$ be the prime factorization of a positive integer and let $k \geq 2$. Show that in the prime factorization of n^{k} every exponent is divisible by k. Conversely, let $m=\prod_{p} p^{f_{p}}$ where $k \mid f_{p}$ for all p. Show that m is the k th power of a positive integer.
(b) Show that $\sqrt{2}$ is not an integer, that is that there is no integer solution to $x^{2}=2$.

Hint: What is the exponent of 2 in the prime factorization of 2 ? What do you know about the exponent of 2 in the prime factorization of x^{2} ?
(c) Show that $\sqrt{2}$ is not a rational number, that is that there are no positive integers x, y such that $\left(\frac{x}{y}\right)^{2}=2$.
Hint: Consider the exponent of 2 on both sides of $x^{2}=2 y^{2}$.
SUPP Show that $\sqrt{2}+\sqrt{3}$ is irrational.
Hint: Squaring shows that if this number is rational then so is $\sqrt{6} \ldots$
6. Let $a \equiv b(m)$. Show that $a^{n} \equiv b^{n}(m)$ for all $n \geq 0$.
7. Consider the numbers $2^{x} \bmod 3$ and $3^{y} \bmod 4$.
(a) Let $2^{x}+3^{y}=z^{2}$ for some integers $x, y, z \geq 0$ where $x, y \geq 1$. Show that $(-1)^{x} \equiv z^{2}(3)$.
(b) Use problem 2 to show that $(-1)^{x} \equiv z^{2}(3)$ forces x to be even.

Hint: Is (-1) a square $\bmod 3$?
(c) Now show that $(-1)^{y} \equiv z^{2}(4)$.
(d) Finally, show that this forces y to be even.
8. For $n=\sum_{j=0}^{J} 10^{j} a_{j}$ set $T(n)=\sum_{j=0}^{J}(-1)^{j} a_{j}$ (i.e. add the even digits and subtract the odd digits).
(a) Show that $T(n) \equiv n(11)$.
(b) Is the number from problem 1 divisible by 11? Justify your answer.
9. (Gaps between squarefree numbers)
(a) Let $\left\{p_{j}\right\}_{j=1}^{J}$ be distinct primes. Show that there exist positive integers x such that for all $1 \leq j \leq J, p_{j}^{2} \mid x+j$.
Hint: Rewrite the condition as a congruence condition on x and apply the CRT.
(*b) Call a number "squarefree" if it is not divisible by the square of a prime (15 is squarefree but 45 isn't). Show that there are arbitrarily large gaps between squarefree numbers.

Supplementary problems (not for submission)

A. Show that every non-zero rational number can be uniquely written in the form $\varepsilon \prod_{p} p^{e_{p}}$ where $\varepsilon \in\{ \pm 1\}, e_{p} \in \mathbb{Z}$ and $\left\{p \mid e_{p} \neq 0\right\}$ is finite. Show that a rational number is a k th power iff ε is a k th power and $k \mid e_{p}$ for all p.
B. (The p-adic norm) For a rational number $a=\varepsilon \prod_{p} p^{e_{p}}$ with a factorization as above set $|n|_{p}=$ $p^{-e_{p}}$ (and $|0|_{p}=0$).
(a) Show that $|a+b|_{p} \leq \max \left\{|a|_{p},|b|_{p}\right\} \leq|a|_{p}+|b|_{p}$ and $|a b|_{p}=|a|_{p}|b|_{p}$.
(b) Define a "distance" between rational numbers by $d(a, b)=|a-b|_{p}$ (analogous to the distance defined using the usual absolute value). Show that this new distance satisfies the triangle inequality: for all $a, b, c \in \mathbb{Q}$,

$$
d(a, c) \leq d(a, b)+d(b, c)
$$

RMK: The p-adic distance encodes congruence information through analysis, a powerful idea due to Kurt Hensel.

