SOLUTIONS TO PROBLEM SET 1

SECTION 1.3

Exercise 4. We see that

$$
\frac{1}{1 \cdot 2}=\frac{1}{2}, \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{2}{3}, \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}=\frac{3}{4},
$$

and is reasonable to conjecture

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} .
$$

We will prove this formula by induction.
Base $n=1$: It is shown above.
Hypothesis: Suppose the formula holds for n.
Step:

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)} & =\sum_{k=1}^{n} \frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)} \\
& =\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2},
\end{aligned}
$$

where in the second equality we used the induction hypothesis.
Exercise 14. We will use strong induction.
Base $54 \leq n \leq 60$: We have

$$
54=7 \cdot 2+10 \cdot 4, \quad 55=7 \cdot 5+10 \cdot 2, \quad 56=7 \cdot 8+10 \cdot 0, \quad 57=7 \cdot 1+10 \cdot 5
$$

and

$$
58=7 \cdot 4+10 \cdot 3, \quad 59=7 \cdot 7+10 \cdot 1, \quad 60=7 \cdot 0+10 \cdot 6 .
$$

Hypothesis: Suppose the result holds for $54 \leq k \leq n$.
Step $n \geq 60$: We have $n-6 \geq 54$, hence by the induction hypothesis we can write

$$
n-6=7 a+10 b \quad \text { for some } a, b \in \mathbb{Z}_{>0} \text {. }
$$

Then $n+1=7(a+1)+10 b$, as desired.

Exercise 22. We will use induction.
Base $n=0$: We have $1+0 h=1=(1+h)^{0}$, as desired.
Hypothesis: Suppose the result holds for n.
Step $n \geq 0$: We have

$$
\begin{aligned}
(1+h)^{n+1} & =(1+h)^{n}(1+h) \\
& \geq(1+n h)(1+h) \\
& =1+h+n h+n h^{2} \\
& \geq 1+(n+1) h,
\end{aligned}
$$

where in the first inequality we used the induction hypothesis and $1+h \geq 0$.
Exercise 24. The proof fails in the statement that the sets $\{1, \ldots, n\}$ and $\{2, \ldots, n+1\}$ have common members. This is false when $n=1$; indeed, the sets are $\{1\}$ and $\{2\}$ which are clearly disjoint.

SECTION 1.5

Exercise 26. Let $a, b \in \mathbb{Z}_{>0}$.
We first prove existence. The division algorithm gives $q^{\prime}, r^{\prime} \in \mathbb{Z}$ such that

$$
a=b q^{\prime}+r^{\prime} \quad \text { with } \quad 0 \leq r^{\prime}<b .
$$

We now divide into two cases:
(i) Suppose $r^{\prime} \leq b / 2$; then $-b / 2<r^{\prime} \leq b / 2$. The result follows by taking $q=q^{\prime}$ and $r=r^{\prime}$.
(ii) Suppose $b / 2<r^{\prime}<b$; then $-b / 2<r^{\prime}-b<0$. We have

$$
a=b q^{\prime}+r^{\prime}=b q^{\prime}+b+r^{\prime}-b=b\left(q^{\prime}+1\right)+\left(r^{\prime}-b\right),
$$

Write $q=q^{\prime}+1$ and $r=r^{\prime}-b$. Then

$$
a=b q+r, \quad \text { with } \quad-b / 2<r<0 \leq b / 2 .
$$

as desired.
We now prove uniqueness. Suppose

$$
a=b q_{1}+r_{1}=b q_{2}+r_{2}, \quad \text { with } \quad-b / 2<r_{1}, r_{2} \leq b / 2 .
$$

Then $b\left(q_{1}-q_{2}\right)=\left(r_{2}-r_{1}\right)$ and b divides $r_{2}-r_{1}$. Since $-b<r_{2}-r_{1}<b$ it follows that $r_{2}-r_{1}=0$ because there is no other multiple of b in this interval. We conclude that $r_{1}=r_{2}$ and $b\left(q_{1}-q_{2}\right)=0$; thus we also have $q_{1}=q_{2}$, as desired.

Exercise 36. Let $a \in \mathbb{Z}$. Dividing a by 3 we get $a=3 q+r$ with $r=0,1,2$. Note that

$$
a^{3}-a=(a-1) a(a+1)=(3 q+r-1)(3 q+r)(3 q+r+1)
$$

and clearly for any choice of $r=0,1,2$ one of the three factors is a multiple of 3 . This is the same as saying that in among three consecutive integers one must be a multiple of 3 .

Exercise 12. Let $a \in \mathbb{Z}_{>0}$.
We first prove existence. We will use strong induction.
Base $a \leq 2$. If $a=1$ take $k=0$ and $e_{0}=1$; if $a=2$ take $k=1, e_{1}=1$ and $e_{0}=-1$.
Hypothesis: Suppose the desired expression exists for all positive integers $<a$.
Step $a \geq 3$. From the modified division algorithm (Problem 26 in Section 1.5) there exist $q, e_{0} \in \mathbb{Z}$ such that

$$
a=3 q+r, \quad \text { with } \quad-3 / 2<r \leq 3 / 2 ;
$$

in particular, $r=-1,0,1$. We have $0<q=(a-r) / 3<a$ and by hypothesis we can write

$$
q=a_{s} 3^{s}+\ldots+a_{1} 3+a_{0}, \quad a_{s} \neq 0, \quad a_{i} \in\{-1,0,1\} .
$$

Thus we have

$$
a=3 q+r=3\left(a_{s} 3^{s}+\ldots+a_{1} 3+a_{0}\right)+r=a_{s} 3^{s+1}+\ldots+a_{1} 3^{2}+a_{0} 3+r
$$

and we take $k=s+1, e_{0}=r$ and $e_{i}=a_{s-1}$ for $i=1, . ., k$.
We now prove uniqueness. We will use strong induction. Suppose

$$
a=e_{k} 3^{k}+\ldots+e_{1} 3+e_{0}=c_{s} 3^{s}+\ldots+c_{1} 3+c_{0}, \quad e_{k}, a_{s} \neq 0, \quad e_{i}, a_{i} \in\{-1,0,1\} .
$$

Base $a \leq 2$: We know from above that if $a=1$ can we take $k=0$ and $e_{0}=1$ and if $a=2$ we can take $k=1, e_{1}=1$ and $e_{0}=-1$, as balanced ternary expansions. Note also that 0 cannot be written as an expansion using non-zero coefficients.
Suppose now $a=1=e_{k} 3^{k}+\ldots+e_{1} 3+e_{0}$ with $k \geq 1$; then a divided by 3 has reminder $e_{0}=1$ by the division algorithm. We conclude that $e_{k} 3^{k}+\ldots+e_{1} 3=0$ which is impossible, unless $e_{i}=0$ for all $i \geq 1$.

Suppose $a=2=1 \cdot 3-1=e_{k} 3^{k}+\ldots+e_{1} 3+e_{0}$ with $k \geq 1$; then a divided by 3 has reminder $e_{0}=-1$ by the modified division algorithm. We conclude that $e_{k} 3^{k}+\ldots+e_{1} 3=3$. Dividing both sides by 3 we conclude that $e_{k} 3^{k-1}+\ldots+e_{1}=1$ which gives $k=1$ and $e_{1}=1$ by the previous paragraph. This shows that $a=1,2$ have an unique balanced ternary expansion.
Hypothesis: Suppose the expansion is unique for all positive integers $<a$.
Step $a \geq 3$: By the uniqueness of the modified division algorithm (Problem 26, Section 1.5), dividing a by 3 we conclude $e_{0}=c_{0}$. Now

$$
\frac{a-e_{0}}{3}=e_{k} 3^{k-1}+\ldots+e_{1}=c_{s} 3^{s-1}+\ldots+c_{1}
$$

and by induction hypothesis we have $k=s$ and $e_{i}=c_{i}$ for $i=1, . ., k$.
Finally, suppose $a<0$; we apply the result to $-a>0$ and (due to the symmetry of the coefficients) we obtain the expansion for a by multiplying by -1 the expansion for $-a$.

Exercise 13. Let w be the weight to be measured. From the previous exercise we can write

$$
w=e_{k} 3^{k}+\ldots+e_{1} 3+e_{0}, \quad e_{k} \neq 0, \quad e_{i} \in\{-1,0,1\} .
$$

Place the object in pan 1. If $e_{i}=1$, then place a weight of 3^{i} into pan 2 ; if $e_{i}=-1$, then place a weight of 3^{i} into pan 1 ; if $e_{i}=0$ do nothing; in the end the pans are balanced.

Exercise 17. Let $n \in \mathbb{Z}_{>0}$ be given in base b by

$$
n=a_{k} b^{k}+\ldots+a_{1} b+a_{0}, \quad a_{k} \neq 0, \quad 0 \leq a_{i}<b .
$$

Let $m \in \mathbb{Z}_{>0}$. We want to find the base b expansion of $b^{m} n$, that is

$$
b^{m} n=c_{s} b^{s}+\ldots+c_{1} b+c_{0}, \quad c_{s} \neq 0, \quad 0 \leq c_{i}<b .
$$

Multiplying both sides of the first equation by b^{m} gives

$$
b^{m} n=a_{k} b^{k+m}+\ldots+a_{1} b^{m+1}+a_{0} b^{m}, \quad a_{k} \neq 0, \quad 0 \leq a_{i}<b .
$$

We know that the expansion in base b is unique, so by comparing the last two equations we conclude that

$$
s=k+m, \quad c_{s-i}=a_{k-i} \text { for } i=0, \ldots, k \quad \text { and } \quad c_{i}=0 \text { for } i=0, \ldots, m-1,
$$

which means

$$
b^{m} n=\left(c_{s} c_{s-1} \ldots c_{0}\right)_{b}=\left(a_{k} a_{k-1} \ldots a_{1} a_{0} 00 \ldots 0\right)_{b},
$$

where we have m zeros in the end.

SECTION 3.1

Exercise 6. Let $n \in \mathbb{Z}$. Note the factorization $n^{3}+1=(n+1)\left(n^{2}-n+1\right)$ into two integers. If $n^{3}+1$ is a prime, then $n \geq 1$ and $n+1$ is either 1 or prime. Since $n+1 \neq 1$ we have $n+1$ is prime and hence $n^{2}-n+1$ must be 1 , which implies $n=0,1$. We conclude $n=1$, as desired.

Exercise 8. Let $n \in \mathbb{Z}_{>0}$. Consider $Q_{n}=n!+1$. There is a prime factor $p \mid Q_{n}$. Suppose $p \leq n$; then $p \mid n!=n(n-1)(n-2) \cdots 2 \cdot 1$ therefore $p \mid Q_{n}-n!=1$, a contradiction. We conclude that $p>n$. In particular, given a positive integer n we can always find a prime larger than n; by growing n we produce infinitely many arbitrarily large primes.

Exercise 9. Note that if $n \leq 2$, then $S_{n} \leq 1$. Therefore, we must assume that $n \geq 3$ so that $S_{n}>1$. It follows then that S_{n} has a prime divisor p. If $p \leq n$, then $p \mid n$!, and so $p \mid\left(n!-S_{n}\right)=1$, a contradiction. Thus $p>n$. Because we can find arbitrarily large primes, there must be infinitely many.

SECTION 3.3

Exercise 6. Let $a \in \mathbb{Z}_{>0}$ and write $d=(a, a+2)$. In particular, d divides both a and $a+2$, hence d also divides the difference $(a+2)-a=2$. We conclude $d=1$ or $d=2$. Now, if a is odd then $a+2$ is also odd, hence $d=1$; if a is even then 2 divides both a and $a+2$, so $d=2$. We conclude that $(a, a+2)=1$ if and only if a is odd and $(a, a+2)=2$ if and only if a is even.

Exercise 10. Write $d=(a+b, a-b)$. If $d=1$ there is nothing to prove. Suppose $d \neq 1$ and let p be a prime divisor of d (which exists because $d \neq 1$). In particular, p is a common divisor of $a+b$ and $a-b$, therefore it divides both their sum and difference; more precisely, p divides

$$
(a+b)+(a-b)=2 a \quad \text { and } \quad(a+b)-(a-b)=2 b
$$

Furthermore, since p is prime we also have
(i) $p \mid 2 a$ implies $p=2$ or $p \mid a$,
(ii) $p \mid 2 b$ implies $p=2$ or $p \mid b$.

Suppose $p \neq 2$. Then in (i) we have $p \mid a$ and in (ii) we have $p \mid b$; this is a contradiction with $(a, b)=1$. We conclude that $p=2$.

So far we have shown that the unique prime factor of d is 2 , therefore $d=2^{k}$ with $k \geq 1$. To finish the proof we need to prove that $k=1$. Since $d \mid a+b$ and $d \mid a-b$ arguing as above we conclude that $2^{k} \mid 2 a$ and $2^{k} \mid 2 b$, that is

$$
2 a=2^{k} x \quad \text { and } \quad 2 b=2^{k} y \quad \text { for some } x, y \in \mathbb{Z}
$$

Suppose $k \geq 2$. Then dividing both equations by 2 we get

$$
a=2^{k-1} x \quad \text { and } \quad b=2^{k-1} y
$$

with $k-1 \geq 1$. In particular $2 \mid a$ and $2 \mid b$, a contradiction with $(a, b)=1$, showing that $k=1$, as desired.

Here is an alternative, shorter proof using one of the main theorms on gcd:
Let $a, b \in \mathbb{Z}$ satisfy $(a, b)=1$. There exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Then

$$
(a+b)(x+y)+(a-b)(x-y)=2 a x+2 b y=2(a x+b y)=2
$$

and since $(a+b, a-b)$ is the smallest positive integer that can be written as an integral linear combination of $a+b$ and $a-b$ we must have $(a+b, a-b) \leq 2$. Thus $(a+b, a-b)=1,2$ as desired.

Exercise 12. Let $a, b \in \mathbb{Z}$ be even and not both zero. There exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=(a, b) \Leftrightarrow \frac{a}{2} x+\frac{b}{2} y=\frac{(a, b)}{2} .
$$

Since $(a / 2, b / 2)$ is the smallest positive integer that can be written as an integral linear combination of $a / 2$ and $b / 2$ we must have $(a / 2, b / 2) \leq(a, b) / 2$.

To finish the proof we will show that $(a / 2, b / 2) \geq(a, b) / 2$. There exist $x, y \in \mathbb{Z}$ such that

$$
\frac{a}{2} x+\frac{b}{2} y=(a / 2, b / 2) \Leftrightarrow a x+b y=2(a / 2, b / 2)
$$

Since (a, b) is the smallest positive integer that can be written as an integral linear combination of a and b we conclude $(a / 2, b / 2) \geq(a, b) / 2$, as desired.

Exercise 24. Let $k \in \mathbb{Z}_{>0}$. Suppose d is a common divisor of $3 k+2$ and $5 k+3$. Then d divides every integral linear combination of these numbers. In particular, d divides

$$
5(3 k+2)-3(5 k+3)=15 k+10-15 k-9=1,
$$

hence $(3 k+2,5 k+3)=1$, as desired.

Section 3.4

Exercise 2. We will use the Euclidean algorithm.
a) Compute $(51,87)$.

$$
87=51 \cdot 1+36, \quad 51=36 \cdot 1+15, \quad 36=15 \cdot 2+6, \quad 15=6 \cdot 2+3, \quad 6=3 \cdot 2+0
$$

thus $(51,87)=3$.
b) Compute $(105,300)$.

$$
300=105 \cdot 2+90, \quad 105=90 \cdot 1+15, \quad 90=15 \cdot 6+0
$$

thus $(105,300)=15$.
c) Compute $(981,1234)$.

$$
1234=981 \cdot 1+253, \quad 981=253 \cdot 3+222, \quad 253=222 \cdot 1+31
$$

and

$$
222=31 \cdot 7+5, \quad 31=5 \cdot 6+1, \quad 5=1 \cdot 5+0,
$$

thus $(981,1234)=1$.

Exercise 6.

a) Compute ($15,35,90$).

Note that $90=15 \cdot 6$ then $((15,90), 35)=(15,35)=5$.
b) Compute (300, 2160, 5040).

Note that $1260=300 \cdot 7+60$ and $300=60 \cdot 5$ thus $(300,2160)=60$.
Since $5040=60 \cdot 84$ we also have

$$
(300,2160,5040)=((300,2160), 5040)=(60,5040)=60
$$

Section 3.5

Exercise 10. Let $a, b \in \mathbb{Z}_{>0}$. Suppose $a^{3} \mid b^{2}$.
Write $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ for the prime factorization of a. Write $p_{i}^{b_{i}}$ for the largest power of p_{i} diving b. In particular, we can write $b=p_{i}^{b_{i}} \cdot m$ for some $m \in \mathbb{Z}$, with $p_{i}+m$.
From $a^{3} \mid b^{2}$ it follows that $p_{i}^{3 a_{i}} \mid p_{i}^{2 b_{i}} m^{2}$ and since $p_{i}+m$ we must have $p_{i}^{3 a_{i}} \mid p_{i}^{2 b_{i}}$. This implies $2 b_{i}-3 a_{i} \geq 0$, hence $b_{i} / a_{i} \geq 3 / 2>1$. Thus $b_{i}>a_{i}$ for all i. Hence we can write

$$
b=p_{1}^{a_{1}} p_{1}^{b_{1}-a_{1}} \cdot p_{2}^{a_{2}} p_{2}^{b_{2}-a_{2}} \cdot \ldots \cdot p_{k}^{a_{k}} p_{k}^{b_{k}-a_{k}} \cdot m^{\prime}
$$

for some $m^{\prime} \in \mathbb{Z}$ (note that m^{\prime} is needed since b may have prime factors which are none of the p_{i}). Therefore, by reordering the factors we also have

$$
b=\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}\right)\left(p_{1}^{b_{1}-a_{1}} p_{2}^{b_{2}-a_{2}} \cdot \ldots \cdot p_{k}^{b_{k}-a_{k}}\right) \cdot m^{\prime}=a\left(p_{1}^{b_{1}-a_{1}} p_{2}^{b_{2}-a_{2}} \cdot \ldots \cdot p_{k}^{b_{k}-a_{k}}\right) \cdot m^{\prime}
$$

Thus $a \mid b$, as desired.

Exercise 30. We will use the formulas for (a, b) and $\operatorname{LCM}(a, b)$ in terms of the prime factorizations of a and b.
a) $a=2 \cdot 3^{2} \cdot 5^{3}, b=2^{2} \cdot 3^{3} \cdot 7^{2}$. Thus

$$
(a, b)=2 \cdot 3^{2}, \quad \operatorname{LCM}(a, b)=2^{2} \cdot 3^{3} \cdot 5^{3} \cdot 7^{2}
$$

b) $a=2 \cdot 3 \cdot 5 \cdot 7, b=7 \cdot 11 \cdot 13$. Thus

$$
(a, b)=7, \quad \operatorname{LCM}(a, b)=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13
$$

c) $a=2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 11^{13}, b=2 \cdot 3 \cdot 5 \cdot 11 \cdot 13$. Thus

$$
(a, b)=2 \cdot 3 \cdot 5 \cdot 11, \quad \operatorname{LCM}(a, b)=2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 11^{13} \cdot 13
$$

d) $a=41^{101} \cdot 47^{43} \cdot 103^{1001}, b=41^{11} \cdot 43^{47} \cdot 83^{111}$. Thus

$$
(a, b)=41^{11}, \quad \operatorname{LCM}(a, b)=41^{101} \cdot 43^{47} \cdot 47^{43} \cdot 83^{111} \cdot 103^{1001}
$$

Exercise 34. Let $a, b \in \mathbb{Z}_{>0}$. Suppose that

$$
(a, b)=18=2 \cdot 3^{2} \quad \text { and } \quad \operatorname{LCM}(a, b)=540=2^{2} \cdot 3^{3} \cdot 5
$$

Since $(a, b) \cdot \operatorname{LCM}(a, b)=a b$ we conclude that the possible prime factors of a, b are 2,3 and 5. Write

$$
a=2^{d_{2}} 3^{d_{3}} 5^{d_{5}}, \quad b=2^{e_{2}} 3^{e_{3}} 5^{e_{5}}, \quad d_{i}, e_{i} \geq 0
$$

for the prime factorizations of a and b. We also know that

$$
(a, b)=2^{\min \left(d_{2}, e_{2}\right)} \cdot 3^{\min \left(d_{3}, e_{3}\right)} \cdot 5^{\min \left(d_{5}, e_{5}\right)}
$$

and

$$
\operatorname{LCM}(a, b)=2^{\max \left(d_{2}, e_{2}\right)} \cdot 3^{\max \left(d_{3}, e_{3}\right)} \cdot 5^{\max \left(d_{5}, e_{5}\right)}
$$

Therefore,

$$
\min \left(d_{2}, e_{2}\right)=1 \quad \max \left(d_{2}, e_{2}\right)=2 .
$$

After interchanging a, b if necessary we can suppose $d_{2}=1$ and $e_{2}=2$. Similarly, we also have

$$
\min \left(d_{3}, e_{3}\right)=2, \max \left(d_{3}, e_{3}\right)=3, \min \left(d_{5}, e_{5}\right)=0, \max \left(d_{5}, e_{5}\right)=1
$$

Thus $\left(d_{3}, e_{3}\right)=(2,3)$ or $(3,2)$ and $\left(d_{5}, e_{5}\right)=(1,0)$ or $(1,0)$, giving the following four possibilities for a, b :
(1) $a=2^{1} \cdot 3^{2}=18$ and $b=2^{2} \cdot 3^{3} \cdot 5^{1}=540$,
(2) $a=2^{1} \cdot 3^{2} \cdot 5^{1}=90$ and $b=2^{2} \cdot 3^{3}=108$,
(3) $a=2^{1} \cdot 3^{3}=54$ and $b=2^{2} \cdot 3^{2} \cdot 5^{1}=180$,
(4) $a=2^{1} \cdot 3^{3} \cdot 5^{1}=270$ and $b=2^{2} \cdot 3^{2}=36$,

Since (a, b) and $\operatorname{LCM}(a, b)$ do not depend on the signs and order of a, b we obtain all the solutions by multiplying a or b or both by -1 and interchanging them: $(\pm 18, \pm 540),(\pm 540, \pm 18)$, $(\pm 90, \pm 108),(\pm 108, \pm 90),(\pm 54, \pm 180),(\pm 180, \pm 54),(\pm 270, \pm 36),(\pm 36, \pm 270)$.

The following argument, avoiding the formula $(a, b) \cdot \operatorname{LCM}(a, b)=a b$, is an alternative to the first part of the proof above. Write

$$
a=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}, \quad b=\underset{7}{p_{1}^{d_{1}}} \ldots p_{k}^{d_{k}}, \quad e_{i}, d_{i} \geq 0
$$

(note that we have to allow the exponents to be zero so that we can use the same primes p_{i} in both factorizations). We have that

$$
18=2 \cdot 3^{2}=(a, b)=p_{1}^{\min \left(e_{1}, d_{1}\right)} \ldots p_{k}^{\min \left(e_{k}, d_{k}\right)}
$$

hence $p_{1}=2, \min \left(e_{1}, d_{1}\right)=1, p_{2}=3, \min \left(e_{2}, d_{2}\right)=2$ and $\min \left(e_{i}, d_{i}\right)=0$ for all i satisfying $3 \leq i \leq k$. We also have,

$$
540=2^{2} 3^{3} 5=\operatorname{LCM}(a, b)=p_{1}^{\max \left(e_{1}, d_{1}\right)} \ldots p_{k}^{\max \left(e_{k}, d_{k}\right)}
$$

hence $\max \left(e_{1}, d_{1}\right)=2, \max \left(e_{2}, d_{2}\right)=3, p_{3}=5, \max \left(e_{3}, d_{3}\right)=1$ and $\max \left(e_{i}, d_{i}\right)=0$ for all i satisfying $4 \leq i \leq k$. Thus $e_{i}=d_{i}=0$ for all i satisfying $4 \leq i \leq k$. Note this argument gives at the same time that the prime factors of a and b are 2,3 or 5 and information about the possible exponents they may occur.

Exercise 42.

(a) Suppose $\sqrt[3]{5}$ is rational. Then, $\sqrt[3]{5}=a / b$ for some coprime positive integers a, b with $b \neq 0$. Then, we have

$$
\sqrt[3]{5}=a / b \Longrightarrow 5 b^{3}=a^{3} \Longrightarrow 5 \mid a
$$

because 5 is a prime dividing the product $a^{3}=a a a$, so divides one of the factors. Therefore, $a=5 k$ for some $k \in \mathbb{Z}$ and, replacing above gives

$$
5 b^{3}=(5 k)^{3} \Longleftrightarrow b^{3}=5^{2} k^{3} \Longrightarrow 5 \mid b,
$$

showing that both a, b are divisible by 5 , a contradiction.
(b) Let $f(x)=x^{3}-5$, which is a monic polynomial with integer coefficients. We have $f(\sqrt[3]{5})=0$ and since $\sqrt[3]{5}$ is not an integer it must be irrational by Theorem 3.18 (in the textbook).

Exercise 45. Suppose that $\log _{p} b$ is rational. Then, $\log _{p} b=r / q$ for some coprime $r, q \in \mathbb{Z}$ with $q \neq 0$. Then,

$$
q \log _{p} b=r \Longrightarrow\left(p^{\log _{p} b}\right)^{q}=p^{r} \Longleftrightarrow b^{q}=p^{r}
$$

and since b is not a power of p it must be divisble by some other prime q. Then $q \mid p^{r}$, a contradiction since p is prime.

Exercise 56. We will work by contradiction.
Suppose there are only finitely many primes of the form $6 k+5$. Denote them $p_{0}=5, p_{1}, \ldots, p_{k}$ and consider the number

$$
N=6 p_{0} p_{1} \cdots p_{k}-1
$$

Cleary $N>1$ because $p_{0}=5$, so there exists a prime factor p dividing N. We apply the division algorithm to divide p by 6 and obtain

$$
p=6 q+r, \quad r, q \in \mathbb{Z}, \quad 0 \leq r \leq 5 .
$$

We now divide into cases
(1) Suppose $r=0,2,4$; then p is even, i.e $p=2$. Since $2+N$ (it divides $N+1$) this is impossible; thus $r \neq 0,2,4$.
(2) Suppose $r=3$; then $3 \mid p$, i.e $p=3$. Again, $3+N$, a contradiction.
(3) Suppose $r=5$; thus p is of the form $6 k+5$ and by hypothesis we have $p=p_{i}$ for some i. Since $p_{i} \mid N+1$ it does not divide N, again a contradiction.

From these cases it follows that p is of the form $6 k+1$. Since p is any prime factor of N, we conclude that all the prime factors occrring in the prime factorization of N are of the form $6 k+1$. In other words,

$$
N=\ell_{1}^{a_{1}} \cdot \ldots \cdot \ell_{s}^{a_{s}} \quad \text { with } \ell_{i}=6 k_{i}+1 \text { distinct primes and } a_{i} \geq 1
$$

Note that $(6 k+1)\left(6 k^{\prime}+1\right)=6\left(6 k k^{\prime}+k+k^{\prime}\right)+1$, that is the product of any two integers of the form $6 k+1$ is also of this form. From the prime factorization above we conclude that N is of the form $6 k+1$. This is incompatible with N being also of the form $6 k-1$ as defined above. Thus our initial assumption is wrong, i.e. there are infinitely many primes of the form $6 k+5$, as desired.
If you are familiar with congruences the last part of the proof can be restaded as follows. From the cases it follows that any prime q dividing N is of the form $6 a+1$, that is $q \equiv 1(\bmod 6)$. Since the product of two such primes q_{1}, q_{2} (not necessatily distinct) also satisfies $q_{1} q_{2} \equiv 1(\bmod 6)$ we conclude that $N \equiv 1(\bmod 6)$ which is a contradiction with $N \equiv-1 \equiv 5(\bmod 6)$.

Section 3.7

Exercise 2. We apply the theorem we learned in class to describe solutions of linear Diophantine equations.
a) The equation $3 x+4 y=7$. Since $(3,4)=1 \mid 7$ there are infinitely many solutions; note that $x_{0}=y_{0}=1$ is a particular solution. Then all the solutions are of the form

$$
x=1+4 t, \quad y=1-3 t, \quad t \in \mathbb{Z} .
$$

b) The equation $12 x+18 y=50$. Since $(12,18)=6+50$ there are no solutions.
c) The equation $30 x+47 y=-11$. Clearly $(30,47)=1$ (47 is prime) so there are solutions. We find a particular solution by applying the Euclidean algorithm followed by back substitution. Indeed,

$$
47=30 \cdot 1+17, \quad 30=17 \cdot 1+13, \quad 17=13 \cdot 1+4
$$

and

$$
13=4 \cdot 3+1, \quad 4=1 \cdot 4+0
$$

in particular, this double-checks that $(30,47)=1$; we continue

$$
\begin{aligned}
1 & =13-4 \cdot 3=13-(17-13) \cdot 3=13 \cdot 4-17 \cdot 3=(30-17) \cdot 4-17 \cdot 3= \\
& =30 \cdot 4-17 \cdot 7=30 \cdot 4-(47-30) \cdot 7=30 \cdot 11-47 \cdot 7 .
\end{aligned}
$$

Thus $x_{1}=11, y_{1}=-7$ is a particular solution to $30 x+47 y=1$. Thus $x_{0}=-11 x_{1}=-121$, $y_{0}=-11 y_{1}=77$ is a particular solution to the desired equation. Therefore, the general solution is given by

$$
x=-121+47 t, \quad y=77-30 t, \quad t \in \mathbb{Z} .
$$

d) The equation $25 x+95 y=970$. Since $(25,95)=5 \mid 970$ there are infinitely many solutions. We divide both sides of the equation by 5 to obtain the equivalent equation

$$
\begin{gathered}
5 x+19 y=194 \\
9
\end{gathered}
$$

Note that $(5,19)=1$ and $x_{1}=4, y_{1}=-1$ is a particular solution to $5 x+19 y=1$; then $x_{0}=194 x_{1}=776, y_{0}=194 y_{1}=-194$ is a particular solution to our equation. Thus the general solution is given by

$$
x=776+19 t, \quad y=-194-5 t, \quad t \in \mathbb{Z} .
$$

e) The equation $102 x+1001 y=1$. We find $(102,1001)$ by applying the Euclidean algorithm:

$$
1001=102 \cdot 9+83, \quad 102=83 \cdot 1+19, \quad 83=19 \cdot 4+7
$$

and

$$
19=7 \cdot 2+5, \quad 7=5 \cdot 1+2, \quad 5=2 \cdot 2+1,
$$

hence $(102,1001)=1$ and the equation has infinitely many solutions. We apply back substitution to find a particular solution:

$$
\begin{aligned}
1 & =5-2 \cdot 2=5-(7-5) \cdot 2=7 \cdot(-2)+5 \cdot 3=7 \cdot(-2)+(19-7 \cdot 2) \cdot 3 \\
& =19 \cdot 3-7 \cdot 8=19 \cdot 3-(83-19 \cdot 4) \cdot 8=83 \cdot(-8)+19 \cdot 35 \\
& =83 \cdot(-8)+(102-83) \cdot 35=102 \cdot 35-83 \cdot 43=102 \cdot 35-(1001-102 \cdot 9) \cdot 43 \\
& =1001 \cdot(-43)+102 \cdot 422 .
\end{aligned}
$$

Thus $x_{0}=422, y_{0}=-43$ is a particular solution. Therefore, the general solution is given by

$$
x=422+1001 t, \quad y=-43-102 t, \quad t \in \mathbb{Z} .
$$

Exercise 6. This problem can be stated as finding a non-negative solution to the Diophantine equation $63 x+7=23 y$, where x is the number of plantains in a pile, and y is the number of plantains each traveler receives.
Replace y by $-y$ and rearrange the equation into $63 x+23 y=-7$ and note that $(63,23)=1$, hence there are infinitely many solutions. We apply Euclidean algorithm

$$
63=23 \cdot 2+17, \quad 23=17 \cdot 1+6, \quad 17=6 \cdot 2+5, \quad 6=5 \cdot 1+1
$$

and back substitution

$$
\begin{aligned}
1 & =6-5=6-(17-6 \cdot 2)=6 \cdot 3-17=(23-17) \cdot 3-17= \\
& =23 \cdot 3-17 \cdot 4=23 \cdot 3-(63-23 \cdot 2) \cdot 4=63 \cdot(-4)+23 \cdot 11,
\end{aligned}
$$

hence $x_{1}=-4, y_{0}=11$ is a particular solution to $63 x+23 y=1$. We conclude that $x_{0}=-7 x_{1}=$ 28, $y_{0}=-7 y_{1}=-77$ is a particular solution. Thus the general solution is given by

$$
x=28+23 t, \quad y=-77-63 t, \quad t \in \mathbb{Z} .
$$

Replacing again y by $-y$ we get the general solution to $63 x+7=23 y$ given by

$$
x=28+23 t, \quad y=77+63 t, \quad t \in \mathbb{Z} .
$$

These values of x, y are both positive when $t \geq-1$, therefore the number of plantains in the pile could be any integer of the form $28+23 t$ for $t \geq-1$.

SOLUTIONS TO PROBLEM SET 2

SECTION 4.1

Exercise 4. Let $a \in \mathbb{Z}$.
Suppose a is even; then $a \equiv 0(\bmod 4)$ or $a \equiv 2(\bmod 4)$. Since $0^{2}=0 \equiv 0(\bmod 4)$ and $2^{2}=4 \equiv 0(\bmod 4)$ we conclude $a^{2} \equiv 0(\bmod 4)$.
Suppose a is odd; then $a \equiv 1(\bmod 4)$ or $a \equiv 3(\bmod 4)$. Since $1^{2}=1 \equiv 1(\bmod 4)$ and $3^{2}=9 \equiv 1(\bmod 4)$ we conclude $a^{2} \equiv 1(\bmod 4)$.

Exercise 30. We will use induction to show that $4^{n} \equiv 1+3 n(\bmod 9)$ for all $n \in \mathbb{Z}_{\geq 0}$.
Base $n=0: 4^{0}=1 \equiv 1=1+3 \cdot 0(\bmod 9)$.
Hypothesis: The result holds for n.
S tep $n+1$: We have

$$
\begin{aligned}
4^{n+1} & =4 \cdot 4^{n} \equiv 4(1+3 n) \equiv 4+12 n \quad(\bmod 9) \\
& \equiv 4+3 n \equiv 1+3(n+1) \quad(\bmod 9),
\end{aligned}
$$

as desired; we used the induction hypothesis in the first congruence.
Exercise 36. Note that the smallest power of 2 which is larger than all the exponents in this exercise is $2^{8}=256$. Therefore, we will repeatedly square and reduce modulo 47 to compute $2^{i}(\bmod 47)$ for $1 \leq i \leq 7$. Indeed, we have

$$
\begin{aligned}
2^{1} & =2 \equiv 2 \quad(\bmod 47) \\
2^{2} & =4 \equiv 4 \quad(\bmod 47) \\
2^{4} & =16 \equiv 16 \quad(\bmod 47) \\
2^{8} & =256 \equiv 21 \quad(\bmod 47) \\
2^{16} & \equiv 21^{2} \equiv 18 \quad(\bmod 47) \\
2^{32} & \equiv 18^{2} \equiv 42 \quad(\bmod 47) \\
2^{64} & \equiv 42^{2} \equiv 25 \quad(\bmod 47) \\
2^{128} & \equiv 25^{2} \equiv 14 \quad(\bmod 47) .
\end{aligned}
$$

a) Compute 2^{32} : We have seen above that $2^{32} \equiv 42(\bmod 47)$
b) Compute 2^{47} : Since $47=32+8+4+2+1$, we have

$$
2^{47}=2^{32} 2^{8} 2^{4} 2^{2} 2^{1} \equiv 42 \cdot 21 \cdot 16 \cdot 4 \cdot 2 \equiv 2 \quad(\bmod 47)
$$

c) Compute 2^{200} : Since $200=128+64+8$, we have

$$
2^{200}=2^{128} 2^{64} 2^{8} \equiv \underset{1}{14 \cdot 25 \cdot 21 \equiv 18 \quad(\bmod 47) ~}
$$

SECTION 4.2

Exercise 2. We will apply the theorem from class that fully describes the solutions of linear congruences.
a) Solve $3 x \equiv 2(\bmod 7)$. Since $(3,7)=1$ there is exactly one solution $\bmod 7$. Since $3 \cdot 3=9 \equiv 2(\bmod 7)$ we conclude that $x \equiv 3(\bmod 7)$ is the unique solution of the congruences.
b) Solve $6 x \equiv 3(\bmod 9)$. Since $(6,9)=3$ there are exactly three non-congruent solutions $\bmod 9$. Note that $x_{0} \equiv 2(\bmod 9)$ is a particular solution; then $x \equiv 2-(9 / 3) t=2-3 t$ with $0 \leq t \leq 2$ give all the non-congruent solutions. Indeed, $t=0,1,2$ respectively correspond to the solutions $x \equiv 2,8,5(\bmod 9)$.
c) Solve $17 x \equiv 14(\bmod 21)$. Since $(17,21)=1$ there is exactly one solution. We know that the solution will correspond to the x-coordinate of a particular solution of the Diophantine equation $17 x-21 y=14$. We compute it by applying the Euclidean algorithm and back substitution:

$$
21=17 \cdot 1+4, \quad 17=4 \cdot 4+1, \quad 4=4 \cdot 1+0
$$

and

$$
1=17-4 \cdot 4=17-(21-17) \cdot 4=17 \cdot 5-21 \cdot 4
$$

hence $x_{1}=5, y_{1}=4$ is a solution to $17 x-21 y=1$. Therefore, $x_{0}=14 x_{1}=14 \cdot 5=70$, $y_{0}=14 y_{1}=14 \cdot 4=56$ is a particular solution to $17 x-21 y=14$. It follows that $x \equiv x_{0} \equiv 7$ ($\bmod 21$) is the unique solution to the congruence.
d) Solve $15 x \equiv 9(\bmod 25)$. Since $(15,25)=5$ and $5+9$ there are no solutions to the congruence.

Exercise 6. The congruence $12 x \equiv c(\bmod 30)$ has solutions if and only if $(12,30)=6$ divides c. In the range $0 \leq c<30$ this occurs for $c=0,6,12,18,24$ in which cases there are 6 non-congruent solutions.

Exercise 8. Since 13 is a small number we can solve this exercise by trial and error.
a) Since $7 \cdot 2=14 \equiv 1(\bmod 13)$ we have $2^{-1} \equiv 7(\bmod 13)$.
b) Since $9 \cdot 3=27 \equiv 1(\bmod 13)$ we have $3^{-1} \equiv 9(\bmod 13)$.
c) Since $8 \cdot 5=40 \equiv 1(\bmod 13)$ we have $5^{-1} \equiv 8(\bmod 13)$.
d) Since $6 \cdot 11=66 \equiv 1(\bmod 13)$ we have $11^{-1} \equiv 6(\bmod 13)$.

Exercise 10.

a) An integer a will have an inverse $\bmod 14$ if and only if $a x \equiv 1(\bmod 14)$ has a solution, that is exactly when $(a, 14)=1$. The numbers a in the interval $1 \leq a \leq 14$ satisfying this condition are $\{1,3,5,9,11,13\}$.
b) Note that the inverse of a^{-1} is a so the inverse of $a \in\{1,3,5,9,11,13\}$ must also belong to this list since it contains all the invertible elements mod 14. Finally, note that

$$
1 \cdot 1 \equiv 1, \quad 3 \cdot 5=15 \equiv 1, \quad 9 \cdot 11=99 \equiv 1, \quad 13 \cdot 13=169 \equiv 1 \quad(\bmod 14)
$$

which means that

$$
1^{-1} \equiv 1, \quad 3^{-1} \equiv 5, \quad 5^{-1} \equiv 3 \quad(\bmod 14)
$$

and

$$
9^{-1} \equiv 11, \quad 11^{-1} \equiv 9, \quad 13^{-1} \equiv 13 \quad(\bmod 14)
$$

SECTION 4.3

Exercise 2. The question is equivalent to find a solution to the congruences

$$
x \equiv 1 \quad(\bmod 2), \quad x \equiv 1 \quad(\bmod 5), \quad x \equiv 0 \quad(\bmod 3) .
$$

The unique modulo 10 solution of the first two congruences is $x \equiv 1(\bmod 10)$. Thus the original system is equivalent to

$$
x \equiv 1 \quad(\bmod 10), \quad x \equiv 0 \quad(\bmod 3) .
$$

We rewrite the first congruence as an equality, namely $x=1+10 t$, where t is an integer. Inserting this expression for x into the second congruence, we find that

$$
1+10 t \equiv 0 \quad(\bmod 3) \quad \Leftrightarrow \quad t \equiv 2 \quad(\bmod 3),
$$

which means $t=2+3 s$, where s is an integer. Hence any integer $x=1+10 t=1+10(2+3 s)=$ $21+30 s$ will be a solution to the problem. For example, taking $s=0$ we get $x=21$. In the language of congruences, we have shown that

$$
x \equiv 21 \quad(\bmod 30)
$$

is the unique solution $\bmod 30$.
We now solve this exercise by applying the CRT to the congruences

$$
x \equiv 1 \quad(\bmod 10), \quad x \equiv 0 \quad(\bmod 3) .
$$

Indeed, we have $b_{1}=1, b_{2}=0, n_{1}=10, n_{2}=3, M=n_{1} n_{2}=30, M_{1}=M / n_{1}=3$ and $M_{2}=M / n_{2}=10$; the formula for the unique solution modulo M gives

$$
x=b_{1} M_{1} y_{1}+b_{2} M_{2} y_{2}=1 \cdot M_{1} \cdot y_{1}+0 \cdot M_{2} \cdot y_{2}=3 y_{1}
$$

where y_{1} is satisfies $M_{1} y_{1} \equiv 1\left(\bmod n_{1}\right)$, that is $y_{1}=3^{-1}(\bmod 10)=7(\bmod 10)$. We conclude that

$$
x=3 \cdot 7=21 \quad(\bmod 30),
$$

as expected.
Exercise 4. We will use the CRT.
a) Solve

$$
x \equiv 4 \quad(\bmod 11), \quad x \equiv 3 \quad(\bmod 17) .
$$

We have $(11,17)=1$. We have $b_{1}=4, b_{2}=3, n_{1}=11, n_{2}=17, M=n_{1} n_{2}=187, M_{1}=M / n_{1}=$ 17 and $M_{2}=M / n_{2}=11$; furthermore, we determine y_{1}, y_{2} by solving the congruences $M_{i} y_{i} \equiv 1$ $\left(\bmod n_{i}\right)$, that is

$$
17 y_{1} \equiv 1 \quad(\bmod 11) \quad \text { and } \quad 11 y_{2} \equiv 1 \quad(\bmod 17) .
$$

Both y_{i} can be found by solving the Diophantine equation $17 y_{1}+11 y_{2}=1$. We only need a particular solution, and one is easy to find by trial and error: $y_{1}=2, y_{2}=-3$. Now

$$
x=b_{1} \cdot M_{1} \cdot y_{1}+b_{2} \cdot M_{2} \cdot y_{2}=4 \cdot 17 \cdot 2+3 \cdot 11 \cdot(-3)=37 .
$$

Thus $x=37$ is the unique solution modulo $M=187$.
b) Note that 2, 3 and 5 are pairwise coprime. The first two equations can be rewritten as

$$
x \equiv-1 \quad(\bmod 2), \quad x \equiv-1 \quad(\bmod 3)
$$

and by the CRT they are equivalent to $x \equiv-1(\bmod 6)$. Thus our system of congruences is equivalent to

$$
x \equiv-1 \quad(\bmod 6), \quad x \equiv 3 \quad(\bmod 5) .
$$

We have $b_{1}=-1, b_{2}=3, n_{1}=6, n_{2}=5, M=n_{1} n_{2}=30, M_{1}=M / n_{1}=5$ and $M_{2}=M / n_{2}=6$; furthermore, we easily find that

$$
y_{1}=5^{-1} \equiv-1 \quad(\bmod 6) \quad \text { and } \quad y_{2}=6^{-1} \equiv 1 \quad(\bmod 5) .
$$

Thus by the formula for the unique solution is

$$
x \equiv(-1) \cdot 5 \cdot(-1)+3 \cdot 6 \cdot 1 \equiv 23 \quad(\bmod 30)
$$

c) By looking at the congruences it is easy to see that $x=6$ satisfies all of them. Thus by the CRT we have an unique solution $x \equiv 6(\bmod 210)$, since $210=2 \cdot 3 \cdot 5 \cdot 7$ and $2,3,5$ and 7 are pairwise coprime.

Alternatively, we can apply the formula

$$
x \equiv 0 \cdot M_{1} \cdot y_{1}+0 \cdot M_{2} \cdot y_{2}+1 \cdot M_{3} \cdot y_{3}+6 \cdot M_{4} \cdot y_{4} \quad(\bmod 210),
$$

where $M_{3}=210 / 5=42$ and $M_{4}=210 / 7=30$. To determine y_{3}, we solve $42 y_{3} \equiv 1(\bmod 5)$, or equivalently $y_{3}=42^{-1} \equiv 2^{-1} \equiv 3 \bmod 5$. To determine y_{4}, we solve $30 y_{4} \equiv 1(\bmod 7)$, or equivalently $y_{4}=30^{-1} \equiv 2^{-1} \equiv 4 \bmod 7$. Now $x \equiv 1 \cdot 42 \cdot 3+6 \cdot 30 \cdot 4 \equiv 6(\bmod 210)$, as expected.

Exercise 22. If x is the number of gold coins, the problem is equivalent to finding the least positive solution to the following system of congruences:

$$
\begin{aligned}
& x \equiv 3 \quad(\bmod 17) \\
& x \equiv 10 \quad(\bmod 16) \\
& x \equiv 0 \quad(\bmod 15) .
\end{aligned}
$$

As 17,16 , and 15 are pairwise coprime, we can use the CRT to find the unique solution modulo $M=15 \cdot 16 \cdot 17=4080$. Thus the solution is given by the formula

$$
x=3 \cdot M_{1} \cdot y_{1}+10 \cdot M_{2} \cdot y_{2}+0 \cdot M_{3} \cdot y_{3} \equiv 3 \cdot M_{1} \cdot y_{1}+10 \cdot M_{2} \cdot y_{2} \quad(\bmod M),
$$

where $M_{1}=15 \cdot 16=240, M_{2}=15 \cdot 17=255, y_{1}$ is a solution to the congruence

$$
(15 \cdot 16) y \equiv 1 \quad(\bmod 17) \Longleftrightarrow(-2) \cdot(-1) y \equiv 2 y \equiv 1 \quad(\bmod 17)
$$

and y_{2} is a solution to

$$
(15 \cdot 17) y \equiv 1 \quad(\bmod 16) \Longleftrightarrow(-1) \cdot 1 y \equiv-y \equiv 1 \quad(\bmod 16) .
$$

Thus, we can take $y_{1}=9$ and $y_{2}=-1$, obtaining

$$
x=3 \cdot 240 \cdot 9+10 \cdot 255 \cdot(-1)=3930 \quad(\bmod 4080) .
$$

We conclude that, the number of coins can be $3930+4080 n$ where n is a non-negative integer; the smallest such number is 3930 .

SECTION 451

Exercise 2.

a) The last 3 digits of 112250 are 250 which is divisible by $5^{3}=125$, but the last 4 digits are 2250 which is not divisible by $5^{4}=625$. Thus the largest power of 5 dividing 112250 is 3 .
b) The last 4 digits of 4860625 are 0625 which is divisible by $5^{4}=625$, but the last 5 digits are 60625 , which is not divisible by $5^{5}=3125$. Thus the largest power of 5 dividing 4860625 is 4 .
c) The last 2 digits of 235555790 are 90 which is not divisible by $5^{2}=25$, but 235555790 is divisible by 5 , so the largest power of 5 dividing 235555790 is 1 .
d) The last 5 digits of 48126953125 are 53125 which is divisible by $5^{5}=3125$. Dividing 48126953125 by $5^{5}=3125$, we get 15400625 . This number is divisible by $5^{4}=625$ but not $5^{5}=3125$. Thus the highest power of 5 dividing 48126953125 is $5+4=9$.

Exercise 4. A number is divisible by 11 if and only if the integer formed by alternatively sum of its digits is divisible by 11 . We use this to test divisibility.
a)

$$
1-0+7-6+3-7+3-2=-1
$$

so 10763732 is not divisible by 11 .
b)

$$
1-0+8-6+3-2+0-0+1-5=0
$$

so 1086320015 is divisible by 11 .
c)

$$
6-7+4-3+1-0+9-7+6-3+7-5=8
$$

so 674310976375 is not divisible by 11 .
d)

$$
8-9+2-4+3-1+0-0+6-4+5-3+7=10
$$

so 8924310064537 is not divisibly by 11 .
Exercise 22. We know that the total cost being $x 42 y$ cents is divisible by $88=8 \cdot 11$ and so is divisible by both 11 and $2^{3}=8$. Thus $42 y$ is divisible by $2^{3}=8$, and so $2 y$ is divisible by $2^{2}=4$ and y is divisible by 2 . The only number $0 \leq y<10$ satisfying this is $y=4$. As $x 424$ is divisible by 11 we require that

$$
x-4+2-4=x-6
$$

is divisible by 11. The only number $0 \leq x<10$ satisfying this is $x=6$. Thus the total cost was $\$ 64.24$ and each chicken cost $\$ 64.24 / 88=\$ 0.73$.

SECTION 5.5

Exercise 12. We use the fact that

$$
\sum_{i=1}^{10} i x_{i} \equiv 0 \quad \bmod 11
$$

a) We have

$$
1 \cdot 0+2 \cdot 1+3 \cdot 9+4 \cdot 8+5 \cdot x_{5}+6 \cdot 3+7 \cdot 8+8 \cdot 0+9 \cdot 4+10 \cdot 9 \equiv 5 x_{2}+8 \equiv 0 \quad(\bmod 11) .
$$

Thus $x_{5} \equiv(-8) \cdot 5^{-1} \equiv 3 \cdot 9 \equiv 5(\bmod 11)$, and the missing digit is $x_{5}=5$.
b) We have
$1 \cdot 9+2 \cdot 1+3 \cdot 5+4 \cdot 5+5 \cdot 4+6 \cdot 2+7 \cdot 1+8 \cdot 2+9 \cdot x_{9}+10 \cdot 6 \equiv 9 x_{9}+7 \equiv 0 \quad(\bmod 11)$.
Thus $x_{9} \equiv(-7) \cdot 9^{-1} \equiv 4 \cdot 5 \equiv 9(\bmod 11)$, and the missing digit is $x_{9}=9$.
c) We have
$1 \cdot x_{1}+2 \cdot 2+3 \cdot 6+4 \cdot 1+5 \cdot 0+6 \cdot 5+7 \cdot 0+8 \cdot 7+9 \cdot 3+10 \cdot 10 \equiv x_{1}+8 \equiv 0 \quad(\bmod 11)$.
Thus $x_{1} \equiv-8 \equiv 3(\bmod 11)$, and the missing digit is $x_{1}=3$.
Exercise 13. Let x_{i} denote the digits of $0-07-289095-0$ which is an ISBN10 code obtained by transposing two digits of a valid ISBN10 code. Let S denote the sum

$$
S=\sum_{i=1}^{10} i x_{i}=3 \cdot 7+4 \cdot 2+5 \cdot 8+6 \cdot 9+7 \cdot 0+8 \cdot 9+9 \cdot 5+10 \cdot 0 \equiv 9 \quad(\bmod 11),
$$

hence $S \not \equiv 0(\bmod 11)$ (as expected, since the code is invalid).
Let S^{\prime} denote the sum corresponding to the original code. We have $S^{\prime} \equiv 0(\bmod 11)$. Suppose that the $\mathrm{j}^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ digits were transposed. Then, to reconstruct S^{\prime} from S, we subtract the incorrectly positioned digits and add the correct ones, that is

$$
S^{\prime}=S-j x_{j}-k x_{k}+j x_{k}+k x_{j}=S+(j-k)\left(x_{k}-x_{j}\right) .
$$

Now, $S^{\prime} \equiv S+(j-k)\left(x_{k}-x_{j}\right)(\bmod 11)$ is equivalent to

$$
0 \equiv 9+(j-k)\left(x_{k}-x_{j}\right) \quad(\bmod 11) \Longleftrightarrow(j-k)\left(x_{k}-x_{j}\right) \equiv-9 \quad(\bmod 11)
$$

By trial and error we find that this is satisfied by $j=7, k=8$ and no other cases. Thus the correct ISBN-10 is $0-07-289905-0$.

SOLUTIONS TO PROBLEM SET 3

SEction 6.1

Exercise 4. We want to find $r \in \mathbb{Z}$ such that

$$
5!25!\equiv r \quad(\bmod 31) \quad \text { and } \quad 0 \leq r \leq 30 .
$$

By Wilson's theorem $30!\equiv-1(\bmod 31)$. Then,

$$
5!25!\equiv 25!\cdot(-26) \cdot(-27) \cdot(-28) \cdot(-29) \cdot(-30) \equiv(-1)^{5} 30!\equiv(-1)^{6} \equiv 1 \quad(\bmod 31)
$$

that is $r=1$.
Exercise 10. We want to find $r \in \mathbb{Z}$ such that

$$
6^{2000} \equiv r \quad(\bmod 11) \quad \text { and } \quad 0 \leq r \leq 10 .
$$

Since 11 is prime and $(6,11)=1$ by Fermat's little theorem we have $6^{10} \equiv 1(\bmod 11)$. Then,

$$
6^{2000}=\left(6^{10}\right)^{200} \equiv 1^{200} \equiv 1 \quad(\bmod 11),
$$

thus $r=1$.
Exercise 12. We want to find $r \in \mathbb{Z}$ such that

$$
2^{1000000} \equiv r \quad(\bmod 17) \quad \text { and } \quad 0 \leq r \leq 16 .
$$

Since 17 is prime and $(2,17)=1$ by FLT we have $2^{16} \equiv 1(\bmod 17)$. Then,

$$
2^{1000000}=\left(2^{16}\right)^{2^{2} \cdot 5^{6}} \equiv 1 \quad(\bmod 17),
$$

thus $r=1$.
Exercise 24. It is a corollary of FLT that $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$. Then

$$
1^{p}+2^{p}+3^{p}+\ldots+(p-1)^{p} \equiv 1+2+3+\ldots+(p-1) \quad(\bmod p) .
$$

Note that since p is odd $p-1$ is even and

$$
p-\frac{p-1}{2}=\frac{2 p-p+1}{2}=\frac{p+1}{2} .
$$

Moreover, we can rearrange the sum above as the following sum of $(p-1) / 2$ terms

$$
\begin{aligned}
1+2+3+\ldots+(p-1) & \equiv(1+(p-1))+(2+(p-2))+\ldots+\left(\frac{p-1}{2}+\frac{p+1}{2}\right) \quad(\bmod p) \\
& \equiv p+p+\ldots p \equiv 0(\bmod p) .
\end{aligned}
$$

SECtion 6.2

Exercise 2. Note that $45=9 \cdot 5$ is composite and $(17,45)=(19,45)=1$.
We have

$$
17^{4} \equiv 2^{4} \equiv 16 \equiv 1 \quad(\bmod 5) \quad \text { and } \quad 17^{4} \equiv(-1)^{4} \equiv 1 \quad(\bmod 9) .
$$

Since $(5,9)=1$ the CRT implies that $17^{4} \equiv 1(\bmod 45)$, therefore

$$
17^{44}=\left(17^{4}\right)^{11} \equiv 1 \quad(\bmod 45)
$$

and we conclude 45 is a pseudoprime for the base 17 .
We have

$$
19^{2} \equiv(-1)^{2} \equiv 1 \quad(\bmod 5) \quad \text { and } \quad 19^{2} \equiv 1^{2} \equiv 1 \quad(\bmod 9)
$$

Since $(5,9)=1$ the CRT implies that $19^{2} \equiv 1(\bmod 45)$, therefore

$$
19^{44}=\left(19^{2}\right)^{22} \equiv 1 \quad(\bmod 45)
$$

and we conclude 45 is a pseudoprime for the base 19.
Exercise 8. Let p be prime and write $N=2^{p}-1$.
Suppose N is composite; hence $p \geq 3$. Since $(2, p)=1$ we have $2^{p-1} \equiv 1(\bmod p)$ by FLT and so $2^{p-1}-1=p k$ for some odd $k \in \mathbb{Z}$. Thus

$$
N-1=2^{p}-2=2\left(2^{p-1}-1\right)=2 p k .
$$

Note also that $2^{p}=N+1 \equiv 1(\bmod N)$; thus

$$
2^{N-1}=2^{2 p k}=\left(2^{p}\right)^{2 k} \equiv 1 \quad(\bmod N)
$$

that is N is a pseudoprime to the base 2 .
Exercise 12. An odd composite $N>0$ is a strong pseudoprime for the base b if it fools Miller's Test in base b. Recall that to be possible to apply the $(k+1)$-th step of Miller's test in base b we need

$$
b^{(N-1) / 2^{k}} \equiv 1 \quad(\bmod N) \quad \text { and } \quad N-1 \text { is divisible by } 2^{k+1} .
$$

Let $N=25$. We have $N-1=25-1=24=2^{3} \cdot 3$. We first observe that

$$
7^{6}=\left(7^{2}\right)^{3} \equiv 49^{3} \equiv(-1)^{3} \equiv-1 \quad(\bmod 25)
$$

We now apply Miller's test

$$
\begin{aligned}
7^{24} & \equiv\left(7^{6}\right)^{4} \equiv(-1)^{4} \equiv 1 \quad(\bmod 25) \quad(\text { i.e. } 25 \text { is a pseudoprime to base } 7) \\
7^{12} & \equiv\left(7^{6}\right)^{2} \equiv(-1)^{2} \equiv 1 \quad(\bmod 25) \\
7^{6} & \equiv-1 \quad(\bmod 25)
\end{aligned}
$$

despite the fact that 6 is divisible by 2 the last congruence means we have to stop. Therefore 25 fools the test, i.e. it is a strong pseudoprime to the base 7 .

Exercise 18.

a) Let $m \in \mathbb{Z}_{>0}$ be such that $6 m+1,12 m+1$ and $18 m+1$ are prime numbers. Write $n=(6 m+1)(12 m+1)(18 m+1)$ and let $b \in \mathbb{Z}_{\geq 2}$ satisfy $(b, n)=1$.

As $6 m+1 \mid n$ we also have $(6 m+1, b)=1$ hence $b^{6 m} \equiv 1(\bmod 6 m+1)$ by FLT. Similarly, we conclude also that

$$
b^{12 m} \equiv 1 \quad(\bmod 12 m+1) \quad \text { and } \quad b^{18 m} \equiv 1 \quad(\bmod 18 m+1) .
$$

Now note that

$$
n=6 \cdot 12 \cdot 18 m^{3}+(6 \cdot 12+6 \cdot 18+12 \cdot 18) m^{2}+36 m+1
$$

then $6 m|n-1,12 m| n-1$ and $18 m \mid n-1$. Thus the following congruence hold

$$
\begin{aligned}
b^{n-1} & \equiv 1 \quad(\bmod 6 m+1) \\
b^{n-1} & \equiv 1 \quad(\bmod 12 m+1) \\
b^{n-1} & \equiv 1 \quad(\bmod 18 m+1)
\end{aligned}
$$

and since $6 m+1,12 m+1$ and $18 m+1$ are pairwise coprime (because they are distinct primes) by CRT we conclude that $b^{n-1} \equiv 1(\bmod n)$. Since b was arbitrary we conclude that n is a Carmichael number.
Alternative proof using Korset's criterion: Let m be a positive integer such that $6 m+1,12 m+1$, and $18 m+1$ are primes. Then the number $n=(6 m+1)(12 m+1)(18 m+1)$ is squarefree. Let $p \mid n$ be a prime. Then $p-1=6 m, 12 m$ or $18 m$. Now note that

$$
n=6 \cdot 12 \cdot 18 m^{3}+(6 \cdot 12+6 \cdot 18+12 \cdot 18) m^{2}+36 m+1
$$

then $6 m|n-1,12 m| n-1$ and $18 m \mid n-1$. We conclude that for all primes $p \mid n$ we have $p-1 \mid n-1$, hence n is a Carmichael number by Korset's criterion.
b) Take respectively $m=1,6,35,45,51$.

SECTION 6.3

Exercise 6. The question is equivalent to find $r \in \mathbb{Z}$ such that

$$
7^{999999} \equiv r \quad(\bmod 10) \quad \text { and } \quad 0 \leq r \leq 9
$$

Since $(7,10)=1$ and $\phi(10)=4$ then $7^{4} \equiv 1(\bmod 10)$ by Euler's theorem.
Note that $999996=4 \cdot 249999$, then

$$
7^{999999}=7^{999996} \cdot 7^{3}=\left(7^{4}\right)^{249999} \cdot 7^{3} \equiv 1 \cdot 7^{3} \equiv 343 \equiv 3 \quad(\bmod 10),
$$

hence $r=3$ is the last digit of the decimal expansion.
Remark: For the argument above we do not need the factorization $999996=4 \cdot 249999$. It is enough to know that $4 \mid 999996$ which one can check (for example) using the criterion for divisibility by 4 . Indeed, write $999996=4 k$; then

$$
7^{999999}=7^{999996} \cdot 7^{3}=\left(7^{4}\right)^{k} \cdot 7^{3} \equiv 343 \equiv 3 \quad(\bmod 10)
$$

as above. This is relevant because sometimes it allows to work with very large numbers without having to find factorizations.

Exercise 8. Let $a \in \mathbb{Z}$ satisfy $3+a$ or $9 \mid a$.
It is a consequence of FLT that $a^{7} \equiv a(\bmod 7)$. We claim that $a^{7} \equiv a(\bmod 9)$. Note that $63=7 \cdot 9$ and $(7,9)=1$. Then by the CRT we conclude that $a^{7} \equiv a(\bmod 63)$, as desired.

We will now prove the claim, dividing into two cases:
(i) Suppose $9 \mid a$; then $9 \mid a^{7}$ and $a^{7} \equiv 0 \equiv a(\bmod 9)$.
(ii) Suppose $3+a$; then $(a, 9)=1$. We have $\phi(9)=6$ and by Euler's theorem we have $a^{6} \equiv 1(\bmod 9)$. Thus $a^{7} \equiv a(\bmod 9)$, as desired.

Exercise 10. Let $a, b \in \mathbb{Z}_{>0}$ be coprime. We have

$$
a^{\phi(b)} \equiv 1 \quad(\bmod b), \quad a^{\phi(b)} \equiv 0 \quad(\bmod a)
$$

and

$$
b^{\phi(a)} \equiv 1 \quad(\bmod a), \quad b^{\phi(a)} \equiv 0 \quad(\bmod b) .
$$

Thus we also have

$$
a^{\phi(b)}+b^{\phi(a)} \equiv 1 \quad(\bmod a), \quad a^{\phi(b)}+b^{\phi(a)} \equiv 1 \quad(\bmod b)
$$

and by the CRT we conclude $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$, as desired.
Exercise 14. We know from the proof of CRT that the unique solution modulo $M=m_{1}$. $\ldots \cdot m_{n}$ to the system of congruences is given by

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{r} M_{r} y_{r} \quad(\bmod M)
$$

where $M_{i}=M / m_{i}$ and $y_{i} \in \mathbb{Z}$ satisfies $M_{i} y_{i} \equiv 1\left(\bmod m_{i}\right)$. Now note that $\left(M_{i}, m_{i}\right)=1$ and Euler's theorem implies

$$
M_{i}^{\phi\left(m_{i}\right)}=M_{i} \cdot M_{i}^{\phi\left(m_{i}\right)-1} \equiv 1 \quad\left(\bmod m_{i}\right),
$$

hence we can take $y_{i}=M_{i}^{\phi\left(m_{i}\right)-1}$. Inserting in the formula for x we get

$$
x=a_{1} M_{1}^{\phi\left(m_{1}\right)}+a_{2} M_{2}^{\phi\left(m_{2}\right)}+\ldots+a_{r} M_{r}^{\phi\left(m_{r}\right)} \quad(\bmod M),
$$

as desired.

SEction 7.1

Exercise 4. Let ϕ be the Euler ϕ-function. Let $n \in \mathbb{Z}_{>0}$. If $n \neq 1$ it has a prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ where $a_{k} \geq 1$ and p_{i} are distinct primes. We have

$$
\phi(n)=\prod_{i=1}^{k} p_{i}^{a_{i}-1}\left(p_{i}-1\right) .
$$

a) Suppose $\phi(n)=1$. Since $\phi(1)=1$ then $n=1$ is a solution. Suppose $n \neq 1$. From the formula above it follows that $p_{i}-1=1$ for all i; thus 2 is the unique prime factor of n, that is $n=2^{a_{1}}$. Again by the formula we have $1=\phi\left(2^{a_{1}}\right)=2^{a_{1}-1}$ which implies $a_{1}=1$, hence $n=2$.

Thus $\phi(n)=1$ if and only if $n=1$ or $n=2$.
b) Suppose $\phi(n)=2$; thus $n \neq 1$. By the formula $p_{i}-1 \mid 2$ for all i; thus only the primes 2 and 3 can divide n. Write $n=2^{a_{1}} 3^{a_{2}}$; if $a_{2} \neq 0$ from the formula we have $3^{a_{2}-1} \mid 2$ thus $a_{2}=1$. We conclude that $a_{2}=0$ or $a_{2}=1$. We now divide into two cases:
(i) Suppose $a_{2}=1$, i.e. $n=2^{a_{1}}$.3. If $a_{1} \geq 2$ then the formula shows that $\phi(n)=2$ is divisible by 4 , a contradiction. We conclude $a_{1} \leq 1$, that is $n=3$ or $n=6$. Both are solutions because $\phi(3)=\phi(6)=2$.
(ii) Suppose $a_{2}=0$, i.e $n=2^{a_{1}}$ with $a_{1} \geq 1$. Then $\phi(n)=2^{a_{1}-1}=2$ implies $a_{1}=2$, that is $n=4$.

Thus $\phi(n)=2$ if and only if $n=3, n=4$ or $n=6$.
c) Suppose $\phi(n)=3$ (hence $n \neq 1$). Then $p_{i}-1=1$ or 3 for all i. Since $p_{i}=4$ is not a prime we conclude that $p_{i}-1=1$; thus only the prime 2 divide n, that is $n=2^{a_{1}}$ with $a_{1} \geq 1$. Therefore $\phi(n)=2^{a_{1}-1}=3$ which is impossible for any value of a_{1}.
Thus there are no solutions to $\phi(n)=3$.
d) Suppose $\phi(n)=4$ (hence $n \neq 1$). Again, the formula shows that $p_{i}-1 \mid 4$ for all i; thus only the primes 2,3 and 5 can divide n, that is $n=2^{a_{1}} 3^{a_{2}} 5^{a_{3}}$ with at least one exponent ≥ 1. If $a_{2} \geq 2$ then $3 \mid \phi(n)=4$, a contradiction; thus $a_{2} \leq 1$. We now divide into the cases:
(i) Suppose $a_{2}=1$, i.e. $n=2^{a_{1}} \cdot 3 \cdot 5^{a_{3}}$. Then

$$
4=\phi(n)=\phi(3) \phi\left(2^{a_{1}} 5^{a_{3}}\right)=2 \phi\left(2^{a_{1}} 5^{a_{3}}\right)
$$

and we conclude $\phi\left(2^{a_{1}} 5^{a_{3}}\right)=2$. By part (b) the only integers m such that $\phi(m)=2$ are $m=3,4,6$ and among these only $m=4$ is of the form $2^{a_{1}} 5^{a_{3}}$. We conclude that $a_{1}=2$ and $a_{3}=0$ therefore $n=3 \cdot 4=12$.
(ii) Suppose $a_{2}=0$, i.e. $n=2^{a_{1}} 5^{a_{3}}$. Clearly, $a_{3} \leq 1$ otherwise $5 \mid \phi(n)=4$.

Suppose $a_{3}=1$, that is $n=2^{a_{1}}$. 5. If $a_{1}=0$ then $n=5$ and $\phi(5)=4$ is a solution; if $a_{1} \geq 1$ then $4=\phi(n)=2^{a_{1}-1} \cdot 4$ implies $a_{1}=1$, that is $n=10$.

Suppose $a_{3}=0$, that is $n=2^{a_{1}}$ with $a_{1} \geq 1$. Thus $\phi(n)=2^{a_{1}-1}=4$ implies $a_{1}=3$ that is $n=8$.

Thus $\phi(n)=4$ if and only if $n=5,8,10$ or 12 .
Exercise 8. Suppose $\phi(n)=14$; hence $n>1$. Consider the prime factorization $n=$ $p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ where $a_{k} \geq 1$ and p_{i} are distinct primes. We have

$$
\phi(n)=\prod_{i=1}^{k} p_{i}^{a_{i}-1}\left(p_{i}-1\right) .
$$

From the formula it follows $p_{i}-1 \mid 14$ for each prime $p_{i} \mid n$, that is $p_{i}-1 \in\{1,2,7,14\}$; thus $p_{i}=2,3,8,15$ and we conclude that only the primes 2 and 3 can divide n. Write $n=2^{a_{1}} 3^{a_{2}}$. We have $\phi(n)=\phi\left(2^{a_{1}}\right) \phi\left(3^{a_{2}}\right)=14$, but from the formula we see that $7+\phi\left(2^{a_{1}}\right)$ and $7+\phi\left(3^{a_{2}}\right)$, a contradiction.
Thus $\phi(n)=14$ has no solutions.
Exercise 18. Let $n \in \mathbb{Z}_{>0}$ be odd; then $(4, n)=1$. Since ϕ is a multiplicative function we have $\phi(4 n)=\phi(4) \phi(n)=2 \phi(n)$, as desired.

SOLUTIONS TO PROBLEM SET 4

Section 7.2

Exercise 4. Let $n \in \mathbb{Z}_{>0}$ and consider its prime decomposition $n=2^{d} p_{1}^{d_{1}} \cdots p_{r}^{d_{r}}$, where p_{i} are distinct odd primes. As σ is multiplicative, we have

$$
\sigma(n)=\sigma\left(2^{d}\right) \sigma\left(p_{1}^{d_{1}}\right) \cdots \sigma\left(p_{r}^{d_{r}}\right)
$$

Thus $\sigma(n)$ is odd if and only if all its factors above, which are of the form $\sigma\left(p^{k}\right)$ where p is a prime, are odd. For any prime p we have $\sigma\left(p^{k}\right)=1+p+\cdots+p^{k}$ which is odd if and only if $p+\cdots+p^{k}$ is even. This is the case when $p=2$ or if p is odd but we have an even number of odd terms in the sum, that is k even.

Thus $\sigma(n)$ is odd if and only if each odd prime p dividing n occurs with an even exponent in the prime factorization of n. That is, the sum of the divisors of n is odd if and only if n is of the form $n=2^{d} p_{1}^{d_{1}} \cdots p_{r}^{d_{r}}$ with $d_{i}=2 d_{i}^{\prime}$ for all i. Equivalently, when n is of the form $2^{d} m^{2}$ for some odd integer m.

Exercise 7. Let p be a prime number and $a \in \mathbb{Z}_{\geq 1}$. The positive divisors of p^{a} are $\left\{1, p, \ldots, p^{a}\right\}$, therefore $\tau\left(p^{a}\right)=a+1$.
Now, let $k>1$ be a positive integer. Thus $\tau\left(p^{k-1}\right)=k$, for any prime p. Since this holds for all primes, we conclude that $\tau(n)=k$ has infinitely many solutions.

Exercise 10. For any prime p and integer $d \geq 0$ we have $\tau\left(p^{d}\right)=\left|\left\{1, p, \ldots, p^{d}\right\}\right|=d+1$.
Let $n \in \mathbb{Z}_{>0}$ and consider its prime factorization $n=p_{1}^{d_{1}} \cdots p_{r}^{d_{r}}$ where p_{i} are distinct primes, and arrange the primes so that $d_{1} \geq d_{2} \geq \cdots \geq d_{r}$.

Suppose $\tau(n)=4$. As τ is multiplicative, we have

$$
\tau(n)=\left(d_{1}+1\right) \cdots\left(d_{r}+1\right)=4
$$

and, in particular, $d_{1}+1 \in\{4,2,1\}$, i.e. $d_{1}=3,1$ or 0 .
Suppose $d_{1}=3$; then $d_{i}+1=1$ for $i \geq 2$. Thus $n=p_{1}^{3}$.
Suppose $d_{1}=1$; then $d_{2}=1$ and $d_{i}=0$ for $i \geq 3$. Thus $n=p_{1} p_{2}$.
Suppose $d_{1}=0$; then $d_{2}>0=d_{1}$ which is impossible because we have $d_{1} \geq d_{2}$.
We conclude that n has exactly four divisors if and only if $n=p^{3}$ for some prime p, or $n=p_{1} p_{2}$ for distinct primes p_{1}, p_{2}.

Exercise 12. Let $k \in \mathbb{Z}_{>0}$ and suppose $n>0$ is a solution to $\sigma(n)=k$.
As n and 1 are both divisors of n, we have $\sigma(n) \geq n+1$. Thus $n+1 \leq k$, that is, $n \leq k-1$. We conclude there are most $k-1$ solutions to $\sigma(n)=k$. In particular, there are only finitely many solutions, as desired.

Exercise 29. We have to prove both directions of the equivalence.
\Rightarrow : Suppose that $n>0$ is composite. Then $n=a b$ for some integers a, b such that $1<a, b<n$ and, without loss of generality, suppose $1<a \leq b<n$. Suppose that $a<\sqrt{n}$ and $b<\sqrt{n}$, then $n=a b<\sqrt{n}^{2}=n$, a contradiction. We conclude that $b \geq \sqrt{n}$.
Therefore, n is divisble at least by the positive integers $1, b$ and n (note that we do not know if $b \neq a$), hence

$$
\sigma(n)=\sum_{d \mid n, d>0} d \geq 1+b+n \geq 1+\sqrt{n}+n>n+\sqrt{n} .
$$

\Leftarrow : We will prove the contrapositive. That is, if $n=1$ or n is a prime then $\sigma(n) \leq n+\sqrt{n}$. If $n=1$ then $\sigma(n)=1<1+\sqrt{1}=2$, as desired.
Suppose that n is prime; thus $n>\sqrt{n}>1$ and we compute

$$
\sigma(n)=\sum_{d \mid n, d>0} d=1+n<n+\sqrt{n} .
$$

Hence, if $\sigma(n)>n+\sqrt{n}$, necessarily, $n>1$ is not prime, therefore n is composite.

SECTION 7.3

Exercise 1. By Theorem 7.10, n is an even perfect number if and only if

$$
n=2^{m-1}\left(2^{m}-1\right)
$$

where m is an integer such that $m \geq 2$ and $2^{m}-1$ is prime. To determine whether $2^{m}-1$ is prime, we use Theorem 7.11, which tells us that m must be prime if $2^{m}-1$ is.
(1) Hence, taking $m=2$, we get

$$
n=2^{1}\left(2^{2}-1\right)=2 \cdot 3=6 .
$$

(Since 6 is small we can double-check that $\sigma(6)=1+2+3+6=12$, as expected.)
(2) Taking $m=3$,

$$
n=2^{2}\left(2^{3}-1\right)=4 \cdot 7=28 .
$$

Again, note that $\sigma(28)=1+2+4+7+14+28=56$, hence 28 is also perfect.
(3) Since $m=4$ is not prime, we know that $2^{4}-1$ cannot be prime, hence

$$
n=2^{3}\left(2^{4}-1\right)=8 \cdot 15
$$

is not perfect. Hence take $m=5$,

$$
n=2^{4}\left(2^{5}-1\right)=16 \cdot 31=496 .
$$

By Theorem 7.10, 496 is perfect.
(4) Similarly, since $m=6$ is not prime, we know that $2^{6}-1$ cannot be prime, hence

$$
n=2^{5}\left(2^{6}-1\right)=32 \cdot 63
$$

is not perfect. Hence take $m=7$,

$$
n=2^{6}\left(2^{7}-1\right)=64 \cdot 127=8128
$$

By Theorem 7.10, 8128 is perfect.
(5) Take $m=11$. Then $2^{11}-1=23 \cdot 89$ is not prime, hence this will not lead us to a perfect number. Take instead $m=13$. Then

$$
n=2^{12}\left(2^{13}-1\right)=4069 \cdot 8191=33550336 .
$$

By Theorem 7.10, 33550336 is perfect.
(6) Take $m=17$. Then

$$
n=2^{16}\left(2^{17}-1\right)=65536 \cdot 131071=8589869056
$$

By Theorem 7.10, 8589869056 is perfect.
Exercise 8. Recall that $n \in \mathbb{Z}_{>0}$ is perfect if $\sigma(n)=2 n$ and we say it is defficient if $\sigma(n)<2 n$.
Let n be a positive integer such that $\sigma(n) \leq 2 n$. That is, n is either deficient or perfect. Suppose $a \mid n$ and $1 \leq a<n$. To show that a must be deficient, we prove the contrapositive. That is, if a is not deficient, i.e.

$$
\sigma(a) \geq 2 a,
$$

then n is neither deficient nor perfect, i.e.

$$
\sigma(n)>2 n .
$$

Indeed, suppose $\sigma(a) \geq 2 a$. Then, since $a \mid n$, there exists $k \in \mathbb{Z}_{>0}$ such that $n=a k$. Then, if $c>0$ divides a, we have $c k \mid a k$, so $c k \mid n$, and

$$
\sigma(n)=\sum_{d \mid n, d>0} d>\sum_{c \mid a, c>0} c k=\left(\sum_{c \mid a, c>0} c\right) k=\sigma(a) k \geq(2 a) k=2 n,
$$

as desired.
Exercise 14. We wish to show that

$$
\sigma(n)=\sigma\left(p^{a} q^{b}\right)=\left(1+p+\cdots+p^{a}\right)\left(1+q+\cdots+q^{b}\right)<2 n=2 p^{a} q^{b},
$$

for distinct odd primes p, q and positive integers a, b. Dividing by $p^{a} q^{b}$, this is equivalent to showing

$$
\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{a}}\right)\left(1+\frac{1}{q}+\cdots+\frac{1}{q^{b}}\right)<2 .
$$

By the finite geometric sum, this is equivalent to

$$
\frac{1-p^{-(a+1)}}{1-\frac{1}{p}} \cdot \frac{1-q^{-(b+1)}}{1-\frac{1}{q}}<2 .
$$

We assume, without loss of generality, that $p<q$. As p and q are odd, we have $p \geq 3$ and $q \geq 5$, thus we have

$$
\frac{1-p^{-(a+1)}}{1-\frac{1}{p}} \cdot \frac{1-q^{-(b+1)}}{1-\frac{1}{q}}<\frac{1}{1-\frac{1}{p}} \cdot \frac{1}{1-\frac{1}{q}} \leq \frac{1}{1-\frac{1}{3}} \cdot \frac{1}{1-\frac{1}{5}}=\frac{3}{2} \cdot \frac{5}{4}=\frac{15}{8}<2 .
$$

SOLUTIONS TO PROBLEM SET 5

SECTION 9.1

Exercise 2. Recall that for $(a, m)=1$ we have ord ${ }_{m} a$ divides $\phi(m)$.
a) We have $\phi(11)=10$ thus $\operatorname{ord}_{11} 3 \in\{1,2,5,10\}$. We check

$$
3^{1} \equiv 3 \quad(\bmod 11), \quad 3^{2} \equiv 9 \quad(\bmod 11), \quad 3^{5} \equiv 9 \cdot 27 \equiv 9 \cdot 5 \equiv 45 \equiv 1 \quad(\bmod 11)
$$

Thus ord ${ }_{11} 3=5$.
b) We have $\phi(17)=16$ thus ord ${ }_{17} 2 \in\{1,2,4,8,16\}$. We compute

$$
2^{2} \equiv 4 \quad(\bmod 17), \quad 2^{4} \equiv-1 \quad(\bmod 17), \quad 2^{8} \equiv(-1)^{2} \equiv 1 \quad(\bmod 17)
$$

Thus $\operatorname{ord}_{17} 2=8$.
c) We have $\phi(21)=2 \cdot 6=12$ thus $\operatorname{ord}_{21} 10 \in\{1,2,3,4,6,12\}$. We compute

$$
10^{2} \equiv 16 \quad(\bmod 21), \quad 10^{3} \equiv 13 \quad(\bmod 21), \quad 10^{4} \equiv(-5)^{2} \equiv 4 \quad(\bmod 21)
$$

and $10^{6} \equiv 4 \cdot 16 \equiv 1(\bmod 21)$. Thus $\operatorname{ord}_{21} 10=6$.
d) We have $\phi(25)=20$, thus $\operatorname{ord}_{25} 9 \in\{1,2,4,5,10,20\}$. We compute

$$
9^{2} \equiv 81 \equiv 6 \quad(\bmod 25), \quad 9^{4} \equiv 36 \equiv 11 \quad(\bmod 25), \quad 9^{5} \equiv 99 \equiv-1 \quad(\bmod 25) .
$$

Thus $\operatorname{ord}_{25} 9=10$.
Exercise 6. Recall that a primitive root (PR) modulo m is an element r with maximal order, that is $\operatorname{ord}_{m} r=\phi(m)$.
a) Note that $\phi(4)=2$, so we are looking for an element r such that $r^{2} \equiv 1(\bmod 4)$, while $r \not \equiv 1(\bmod 4)$. Taking $r=3$, we observe that indeed $3 \not \equiv 1(\bmod 4)$ and $\phi(4)=2$, so $r=3$ is a PR modulo 4.
b) $r=2$ is a $\mathrm{PR} \bmod 5$, as $\phi(5)=4$ and $2^{4}=16$ is the first power of 2 congruent to $1 \bmod 5$.
c) $r=3$ is a $\mathrm{PR} \bmod 10$, as $\phi(10)=4,3^{2}=9 \not \equiv 1(\bmod 10)$ and the possible orders are $\{1,2,4\}$.
d) Note that $\phi(13)=12$, hence $\operatorname{ord}_{13} a \in\{1,2,3,4,6,12\}$ for all $a \in \mathbb{Z}$ such that $(a, 13)=1$. For example, we compute

$$
2^{2} \equiv 4 \quad(\bmod 13), \quad 2^{3} \equiv 8 \quad(\bmod 13), \quad 2^{4} \equiv 3 \quad(\bmod 13)
$$

and $2^{6} \equiv 64 \equiv-1(\bmod 13)$. Thus $\operatorname{ord}_{13} 2=12$, hence $r=2$ is a PR $\bmod 13$.
e) Note that $\phi(14)=6$, hence $\operatorname{ord}_{14} a \in\{1,2,3,6\}$ for all $a \in \mathbb{Z}$ such that $(a, 14)=1$. For example, we compute

$$
3^{2} \equiv 9 \quad(\bmod 14), \quad 3^{3} \equiv 27 \equiv-1 \quad(\bmod 14)
$$

and so $\operatorname{ord}_{14} 3=6$, that is $r=3$ is a PR mod 14 .
f) Note that $\phi(18)=6$, hence $\operatorname{ord}_{18} a \in\{1,2,3,6\}$ for all $a \in \mathbb{Z}$ such that $(a, 18)=1$. For example, we compute

$$
5^{2} \equiv 7 \quad(\bmod 18), \quad 5^{3} \equiv 35 \equiv-1 \quad(\bmod 18)
$$

and so $\operatorname{ord}_{18} 5=6$, that is $r=5$ is a PR mod 18 .
Exercise 8. We have $\phi(20)=\phi(4) \phi(5)=8$, hence $\operatorname{ord}_{20}(a) \in\{1,2,4,8\}$ for all $a \in \mathbb{Z}$ such that $(a, 20)=1$. To prove there are no primitive roots $\bmod 20$ we have to show that $\operatorname{ord}_{20}(a)=8$ never occurs.

It suffices to show that for all a such that $0 \leq a \leq 19$ and $(a, 20)=1$ we have $a^{d} \equiv 1(\bmod 20)$ for some $d \in\{1,2,4\}$. Indeed, all such values of a are $\{1,3,7,9,11,13,17,19\}$. Clearly, $1^{1} \equiv 1$ (mod 20) and direct calculations show that

$$
9^{2} \equiv 11^{2} \equiv 19^{2} \equiv 1 \quad(\bmod 20) \quad \text { and } \quad 3^{4} \equiv 7^{4} \equiv 13^{4} \equiv 17^{4} \equiv 1 \quad(\bmod 20) .
$$

Exercise 12. Let $a, b, n \in \mathbb{Z}$ satisfy $n>0,(a, n)=(b, n)=1$ and $\left(\operatorname{ord}_{n} a, \operatorname{ord}_{n} b\right)=1$.
Write $y=\operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$. We have

$$
(a b)^{y}=a^{y} b^{y}=\left(a^{\operatorname{ord}_{n} a}\right)^{\operatorname{ord}_{n} b}\left(b^{\operatorname{ord}_{n} b}\right)^{\operatorname{ord}_{n} a} \equiv 1 \cdot 1 \equiv 1 \quad(\bmod n),
$$

hence $\operatorname{ord}_{n}(a b) \mid y$. Therefore $\operatorname{ord}_{n}(a b) \leq \operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$.
To finish the proof, we will now show the opposite inequality $\operatorname{ord}_{n}(a b) \geq \operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$.
Note that $(b, n)=1$ implies b has an inverse b^{-1} modulo n. Furthermore, for $k \geq 0$ we have $\left(b^{k}, n\right)=1$ and the inverse of b^{k} is $\left(b^{-1}\right)^{k}$ which is usually denoted b^{-k}. Suppose $(a b)^{x} \equiv 1$ $(\bmod n)$, which is equivalent to $a^{x} \equiv b^{-x}(\bmod n)$, because b^{-1} exists. We now compute

$$
a^{x \cdot \text { ord }_{n} b}=\left(a^{x}\right)^{\operatorname{ord}_{n} b} \equiv\left(b^{-x}\right)^{\operatorname{ord}_{n} b} \equiv\left(b^{-1}\right)^{x \operatorname{ord}_{n} b} \equiv\left(b^{x \operatorname{ord}_{n} b}\right)^{-1} \equiv\left(\left(b^{\operatorname{ord}_{n} b}\right)^{x}\right)^{-1} \equiv 1 \quad(\bmod n),
$$

hence $\operatorname{ord}_{n} a \mid x \cdot \operatorname{ord}_{n} b$. Since $\left(\operatorname{ord}_{n} a, \operatorname{ord}_{n} b\right)=1$ we have $\operatorname{ord}_{n} a \mid x$.
Note that the argument in the previous paragraph also holds if we swap a and b, so we also have $\operatorname{ord}_{n} b \mid x$.

We have just shown that $(a b)^{x} \equiv 1(\bmod n)$ implies $\operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b \mid x$. In particular, taking $x=\operatorname{ord}_{n}(a b)$ implies $\operatorname{ord}_{n}(a b) \geq \operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$, as desired.

We conclude $\operatorname{ord}_{n}(a b)=\operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$.
Exercise 16. For $m=1$ we have $\operatorname{ord}_{m} a=1-1=0$ which makes no sense, so $m>1$.
Suppose $m>1$. By definition $\phi(m)$ is the number of integers a in the interval $1 \leq a \leq m$ satisfying $(a, m)=1$. In particular, it follows that $1 \leq \phi(m) \leq m-1$, because (m, m) $=m>1$.
Let $a, m \in \mathbb{Z}$ satisfy $m>1$ and $(a, m)=1$. We know that $\operatorname{ord}_{m} a \mid \phi(m)$.
Suppose ord ${ }_{m} a=m-1$; then $\phi(m) \geq m-1$. We conclude $\phi(m)=m-1$. This can only occur if m is prime, finishing the proof. Indeed, suppose m is composite hence it has some factor n in the interval $1<n<m-1$. Clearly, $(n, m)=n \neq 1$ therefore $\phi(m)$ is at most $m-2$.

Section 9.2

Exercise 5. We know that there are $\phi(\phi(13))=\phi(12)=4$ incongruent primitive roots $\bmod 13$. For each k in $1 \leq k \leq 12$ we have $(k, 13)=1$ and we compute $k^{i}(\bmod 13)$ for all $i>0$ dividing $\phi(13)=12$, that is $i \in\{1,2,3,4,6,12\}$.
From FLT we know that $k^{12} \equiv 1(\bmod 13)$, so the primitive roots are the values of k such that $k^{i} \not \equiv 1(\bmod 13)$ for all $i \in\{1,2,3,4,6\}$. We stop when we find four such values of k; these are $\{2,6,7,11\}$.
Alternative proof requiring less computations. Computing $2^{i}(\bmod 13)$ for i a positive divisor of $\phi(13)=12$, that is $i \in\{1,2,3,4,6,12\}$ (the possible orders of 2 modulo 13) we verify that $2^{i} \not \equiv 1(\bmod 13)$ for all $i \in\{1,2,3,4,6\}$, hence 2 has order 12 , so it is a primitive root $\bmod 13$. Thus $\left\{2^{i}\right\}, 1 \leq i \leq 12$ forms a reduced residue system. We also know that

$$
\operatorname{ord}_{13} 2^{i}=\frac{\operatorname{ord}_{13} 2}{\left(i, \operatorname{ord}_{13} 2\right)}
$$

Now, if $\operatorname{ord}_{13} 2^{i}=12$ then $\left(i, \operatorname{ord}_{13} 2\right)=(i, 12)=1$ which occurs exactly when $i=1,5,7,11$. Therefore, $2,2^{5}, 2^{7}$ and 2^{11} are four non-congruent primitive roots modulo 13.
If we want to obtain the smallest representatives for each of these primitive roots we have to reduce them modulo 13 , obtaining

$$
2^{1} \equiv 2, \quad 2^{5} \equiv 6, \quad 2^{7} \equiv 11, \quad 2^{11} \equiv 7 \quad(\bmod 13)
$$

to conclude that $\{2,6,7,11\}$ is a set of all incongruent primitive roots mod 13 with smallest possible representatives, which was expected by our previous solution.

Exercise 8. Let r be a primitive root $\bmod p$, that is $\operatorname{ord}_{p} r=\phi(p)=p-1$.
We first show that $r^{\frac{p-1}{2}} \equiv-1 \bmod p$. Indeed, denote $r^{\frac{p-1}{2}}$ by x; then $x^{2} \equiv r^{p-1} \equiv 1 \bmod p$. Hence $x \equiv 1$ or $-1 \bmod p$. But $x=r^{\frac{p-1}{2}}$ cannot be $1 \bmod p$, because it would contradict $\operatorname{ord}_{p} r=p-1$. Hence $x \equiv-1 \bmod p$ as claimed.
Now we want to show that $-r$ is a primitive root, that is $\operatorname{ord}_{p}(-r)=p-1$.
We have that

$$
-r \equiv(-1) r \equiv r^{\frac{p-1}{2}+1} \quad(\bmod p)
$$

where in the second congruence we used that $r^{\frac{p-1}{2}} \equiv-1 \bmod p$. We will determine the order of $r^{\frac{p-1}{2}+1} \bmod p$ by using the formula

$$
\operatorname{ord}_{p} r^{k}=\frac{\operatorname{ord}_{p} r}{\left(\operatorname{ord}_{p} r, k\right)}
$$

Taking $k=\frac{p-1}{2}+1$ and since $\operatorname{ord}_{p} r=p-1$ we have to show that $\left(p-1, \frac{p-1}{2}+1\right)=1$.
We note that up to this point we have not yet used the hypothesis $p \equiv 1(\bmod 4)$.
From $p \equiv 1(\bmod 4)$, we can write p as $4 m+1$ for some integer $m \geq 1$. Then $p-1=4 m$, and $\frac{p-1}{2}+1=2 m+1$. Thus we want to prove that $(4 m, 2 m+1)=1$ for any integer $m \geq 1$.
Recall that for all $a, b, q \in \mathbb{Z}$ with $a \geq b>0$ we have $(a, b)=(b, a-b q)$. This gives

$$
(4 m, 2 m+1)=(2 m+1,4 m-2(2 m+1))=(2 m+1,-2)=(2 m+1,2)=1
$$

as desired. In summary, $\operatorname{ord}_{p}(-r)=\operatorname{ord}_{p}\left(r^{2 m+1}\right)=\frac{p-1}{\operatorname{gcd}(4 m, 2 m+1)}=\frac{p-1}{1}=p-1$, that is $-r$ is a primitive root.

Exercise 10.

a)

$x^{2}-x$ has 4 incongruent solutions mod 6 , namely, $0,1,3$, and 4 . Indeed, modulo 6 we have

$$
\begin{gathered}
0^{2}-0 \equiv 0, \quad 1^{2}-1 \equiv 0, \quad 2^{2}-2 \equiv 2 \not \equiv 0 \quad(\bmod 6) \\
3^{2}-3 \equiv 3-3 \equiv 0, \quad 4^{2}-4 \equiv 4-4 \equiv 0, \quad \text { and } \quad 5^{2}-5 \equiv 2 \not \equiv 0 \quad(\bmod 6) .
\end{gathered}
$$

b)

Part (a) does not violate Lagrange's theorem because the modulus in Lagrange's theorem must be prime, but the modulus in part a) is composite.

Exercise 16. Let p be a prime of the form $p=2 q+1$, where q is an odd prime.
Let $a \in \mathbb{Z}$ satisfy $1<a<p-1$; in particular, $(a, p)=1$. Since $p-a^{2} \equiv-a^{2}(\bmod p)$ we have $\operatorname{ord}_{p}\left(p-a^{2}\right)=\operatorname{ord}_{p}\left(-a^{2}\right)$. We will show that $\operatorname{ord}_{p}\left(-a^{2}\right)=p-1$.
We know that $\operatorname{ord}_{p}\left(-a^{2}\right)$ divides $\phi(p)=p-1=2 q$. Thus $\operatorname{ord}_{p}\left(-a^{2}\right)=1,2, q$, or $2 q$. We have to rule out 1,2 and q. Equivalently, we need to show that
(1) $\left(-a^{2}\right)^{2} \not \equiv 1(\bmod p)$
(2) $\left(-a^{2}\right)^{q} \not \equiv 1(\bmod p)$

Proof of (1): Assume the contrary. Then, $a^{4} \equiv 1(\bmod p)$. Thus $\operatorname{ord}_{p} a$ divides both 4 and $p-1=2 q$. Hence, $\operatorname{ord}_{p} a$ divides $\operatorname{gcd}(4,2 q)=2$. In particular, $a^{2} \equiv 1(\bmod p)$, therefore $a \equiv \pm 1(\bmod p)$. This contradicts $1<a<p-1$, completing the proof of (1).
Proof of (2): Assume the contrary, that is $\left(-a^{2}\right)^{q} \equiv 1(\bmod p)$. Therefore,

$$
1 \equiv\left(-a^{2}\right)^{q} \equiv(-1)^{q} a^{2 q} \equiv(-1)^{q} \equiv-1 \quad(\bmod p),
$$

where in the 3rd congruence we applied FLT and in the last one we used the fact that q is odd. Thus, $-1 \equiv 1(\bmod p)$, a contradiction since $p>2$.

SECTION 9.4

Exercise 2. We first note that 5 is a primitive root of 23.
To solve this problem consult the table of indexes relative to 5 modulo 23. It is given as the answer to problem 1 of Section 9.4.
a) We want to solve $3 x^{5} \equiv 1(\bmod 23)$.

Taking the index of both sides of our equation, gives

$$
\operatorname{ind}_{5}\left(3 x^{5}\right) \equiv \operatorname{ind}_{5}(1) \equiv 0 \quad(\bmod \phi(23)=22)
$$

which expands into

$$
\operatorname{ind}_{5}(3)+5 \operatorname{ind}_{5}(x) \equiv 0 \quad(\bmod 22) \quad \Leftrightarrow \quad 5 \operatorname{ind}_{5}(x) \equiv-16 \equiv 6 \quad(\bmod 22)
$$

Since $5^{-1} \equiv 9(\bmod 22)$ we get $\operatorname{ind}_{5}(x) \equiv 10(\bmod 22)$ which means that $x \equiv 9(\bmod 23)$.
b) We want to solve $3 x^{14} \equiv 2(\bmod 23)$. The procedure is similar as before.

Take the index of both sides of our equation, giving $\operatorname{ind}_{5}\left(3 x^{14}\right) \equiv \operatorname{ind}_{5}(2) \equiv 2(\bmod 22)$. Now, we expand this into $\operatorname{ind}_{5}(3)+14 \operatorname{ind}_{5}(x) \equiv 2(\bmod 22)$. Hence, $14 \operatorname{ind}_{5}(x) \equiv-14 \equiv 8$ $(\bmod 22)$. We then reduce this equation on all sides by 2 , giving us $7 \operatorname{ind}_{5}(x) \equiv 4(\bmod 11)$.
Since $7^{-1} \equiv 8(\bmod 11)$ we obtain $\operatorname{ind}_{5}(x) \equiv 10(\bmod 11)$. Therefore, $\operatorname{ind}_{5}(x) \equiv 10,21$ $(\bmod 22)$. Using the table of indices, we find that this means that $x \equiv 9,14(\bmod 23)$.

Exercise 3.

a) We want to solve $3^{x} \equiv 2(\bmod 23)$.

We know 5 is a primitive root $\bmod 23$. Note that $\phi(23)=22$. We take the index of both sides giving

$$
x \operatorname{ind}_{5}(3) \equiv 2 \quad(\bmod 22) \quad \Leftrightarrow \quad 16 x \equiv 2 \quad(\bmod 22) .
$$

Thus $8 x \equiv 1(\bmod 11)$ and since $8^{-1} \equiv 7(\bmod 11)$ we have $x \equiv 7(\bmod 11)$.
Thus, $x \equiv 7,18(\bmod 22)$.
b) We want to solve $13^{x} \equiv 5(\bmod 23)$.

If there is such an x, taking the index of both sides we obtain $x \operatorname{ind}_{5}(13) \equiv 1(\bmod 22)$, or rather, $14 x \equiv 1(\bmod 22)$, which means that 14 is invertible $\bmod 22$. But since $(14,22)=2$ we know that 14 is not invertible mod 22; thus the initial equation cannot have solutions.

Exercise 4. Consider the equation $a x^{4} \equiv 2(\bmod 13)$.
We check that 2 is a primitive root mod 13. Taking the index of both sides we have $\operatorname{ind}_{2}(a)+$ $4 \operatorname{ind}_{2}(x) \equiv 1(\bmod 12)$, or rather, $4 \operatorname{ind}_{2}(x) \equiv 1-\operatorname{ind}_{2}(a)(\bmod 12)$.
Write $y=\operatorname{ind}_{2}(x)$. Thus, the above gives the linear congruence

$$
4 y \equiv 1-\operatorname{ind}_{2}(a) \quad(\bmod 12)
$$

which, since $\operatorname{gcd}(4,12)=4$, will have a solution if and only if $4 \mid 1-\operatorname{ind}_{2}(a)$. This will be the case only when $\operatorname{ind}_{2}(a) \equiv 1,5,9(\bmod 12)$, which correspond to $a \equiv 2,6,5(\bmod 13)$.
Alternative proof: If $13 \mid a$ then clearly there are no solutions. Suppose $13+a$. Thus a^{-1} $\bmod 13$ exists and we multiply the congruence by it to obtain $x^{4} \equiv 2 a^{-1}(\bmod 13)$. Write $d=(4, \phi(13))=(4,12)=4$. Thus, we have seen in class that $x^{4} \equiv 2 a^{-1}(\bmod 13)$ will have solutions if and only if $\left(2 a^{-1}\right)^{\phi(13) / d} \equiv 1(\bmod 13)$. This is equivalent to $a^{3} \equiv 8(\bmod 13)$. Direct computations show this holds exactly when $a \equiv 2,5,6(\bmod 13)$, as expected.
Exercise 5. Consider the equation $8 x^{7} \equiv b(\bmod 29)$.
We check that 2 is a primitive root $\bmod 29$.
If $b \equiv 0(\bmod 29)$ then the equation has the solution of $x \equiv 0(\bmod 29)$.
Suppose that $b \not \equiv 0 \bmod 29$. Taking the index gives $\operatorname{ind}_{2}(8)+7 \operatorname{ind}_{2}(x) \equiv \operatorname{ind}_{2}(b)(\bmod 28)$, or rather, $7 \operatorname{ind}_{2}(x) \equiv \operatorname{ind}_{2}(b)-3(\bmod 28)$.
Write $y=\operatorname{ind}_{2}(x)$. The previous gives the linear congruence

$$
7 y \equiv \operatorname{ind}_{2}(b)-3 \quad(\bmod 28)
$$

which, since $\operatorname{gcd}(7,28)=7$, will have a solution if and only if $7 \mid \operatorname{ind}_{2}(b)-3$. This is the case when $\operatorname{ind}_{2}(b) \equiv 3,10,17,24(\bmod 28)$, which correspond to $b \equiv 8,9,20,21(\bmod 29)$.
We conclude that the complete list of values of b such that the initial equation has solutions is $b \equiv 0,8,9,20,21(\bmod 29)$.
Alternative proof for the case $b \not \equiv 0(\bmod 29)$: Multiply the congruence by $8^{-1} \bmod 29$ obtaining $x^{7} \equiv 8^{-1} b(\bmod 29)$. Write $d=(7, \phi(29))=(7,28)=7$. Thus, we have seen in class that $x^{7} \equiv 8^{-1} b(\bmod 29)$ will have solutions if and only if $\left(8^{-1} b\right)^{\phi(29) / d} \equiv 1(\bmod 29)$. This is equivalent to $b^{4} \equiv 7(\bmod 29)$. Direct computations show this holds exactly when $b \equiv 8,9,20,21(\bmod 29)$.
Exercise 8. Let p be an odd prime and r a primitive root $\bmod p$, that is $\operatorname{ord}_{p} r=\phi(p)=p-1$.
Note that $p-1 \equiv-1(\bmod p)$. Thus we have to show that

$$
r^{\frac{p-1}{2}} \equiv-1 \quad(\bmod p) \quad \text { and } \quad r^{i} \not \equiv-1 \quad(\bmod p) \text { for } 1 \leq i<(p-1) / 2 .
$$

Since p is odd, $p-1$ is even and $\left(r^{\frac{p-1}{2}}\right)^{2}=r^{p-1} \equiv 1(\bmod p)$; thus $r^{\frac{p-1}{2}} \equiv \pm 1(\bmod p)$. If $r^{\frac{p-1}{2}} \equiv 1(\bmod p)$ then $\operatorname{ord}_{p} r<p-1$, a contradiction. We conclude $r^{\frac{p-1}{2}} \equiv-1(\bmod p)$.
Suppose that $r^{i} \equiv-1(\bmod p)$ for some $i<(p-1) / 2$; therefore $\left(r^{i}\right)^{2}=r^{2 i} \equiv 1(\bmod p)$ and $2 i<2(p-1) / 2=p-1$, which again means $\operatorname{ord}_{p} r<p-1$, a contradiction.

Exercise 9. Let p be an odd prime. We have $\phi(p)=p-1$ is even.
Write $d=(4, p-1)$. From class or Theorem 9.17 in Rosen, we know that $x^{4} \equiv-1(\bmod p)$ has a solution if and only if $(-1)^{\frac{\phi(p)}{d}} \equiv 1(\bmod p)$. Since the order of $-1 \bmod p$ is 2 we must have $2 \left\lvert\, \frac{p-1}{d}\right.$. That is, there exists k such that $2 k=\frac{p-1}{(p-1,4)}$.
Since $p-1$ is even we have $(p-1,4)=2$ or 4 . If $(p-1,4)=2$ then $\frac{p-1}{(p-1,4)}$ must be odd, a contradiction. Therefore, $(p-1,4)=4$, so $2 k=\frac{p-1}{4}$, or rather, $8 k+1=p$, as required.

Exercise 18. An integer a is called a cubic residue $\bmod p$ when there is an integer r such that $r^{3} \equiv a(\bmod p)$. In other words, the congruence equation $x^{3} \equiv a(\bmod p)$ has a solution.
Let $p>3$ be a prime and a an integer not divisible by p. We want to know if the congruence $x^{3} \equiv a(\bmod p)$ has a solution, where a is fixed and we are solving for x.
Note that $(a, p)=1$ and let $d=\operatorname{gcd}(3, p-1)$.
By Theorem 9.17 in Rosen a solution exists if and only if $a^{\frac{p-1}{d}} \equiv 1(\bmod p)$.
(1) Suppose $p \equiv 2(\bmod 3)$. Then $d=1$ and $a^{\frac{p-1}{d}} \equiv a^{p-1} \equiv 1(\bmod p)$ by FLT.
(2) Suppose $p \equiv 1(\bmod 3)$. Then $d=3$ and a solution exists if and only if $a^{\frac{p-1}{3}} \equiv 1(\bmod p)$. Why is $d=1$ in part (1) and $d=3$ in part (2)?
Since the only divisors of 3 are 1 and 3 it follows that $d=1$ if $3+p-1$ and $d=3$ if $3 \mid p-1$. In part (1) we have $p-1 \equiv 1(\bmod 3)$ so $p-1$ is not divisible by 3 . In part (2) we have $p-1 \equiv 0(\bmod 3)$ so $p-1$ is divisible by 3 .

SOLUTIONS TO PROBLEM SET 6

SECTION 3.6

Exercise 4.

b)
(i) We have $\sqrt{73} \approx 8.5$, so $t=9$ is the smallest integer $\geq \sqrt{73}$;
(ii) We calculate

$$
\begin{aligned}
& 9^{2}-73=8 \\
& 10^{2}-73=27 \\
& 11^{2}-73=48 \\
& 12^{2}-73=71 \\
& 13^{2}-73=96 \\
& 14^{2}-73=123 \\
& 15^{2}-73=152 \\
& 16^{2}-73=183 \\
& 17^{2}-73=216 \\
& 18^{2}-73=251 \\
& 19^{2}-73=288 \\
& 20^{2}-73=327 \\
& 21^{2}-73=368 \\
& 22^{2}-73=411 \\
& 23^{2}-73=456 \\
& 24^{2}-73=503 \\
& 25^{2}-73=552 \\
& 26^{2}-73=603 \\
& 27^{2}-73=656 \\
& 28^{2}-73=711 \\
& 29^{2}-73=768 \\
& 30^{2}-73=827 \\
& 31^{2}-73=888 \\
& 32^{2}-73=951 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& 33^{2}-73=1016 \\
& 34^{2}-73=1083 \\
& 35^{2}-73=1152 \\
& 36^{2}-73=1223 \\
& 37^{2}-73=1296=36^{2}
\end{aligned}
$$

(iii) Thus we have that $73=37^{2}-36^{2}=(37-36)(37+36)=1 \cdot 73$ is the only factorization of 73 , hence 73 is prime.
c)
(i) We have $\sqrt{46009} \approx 214.5$, so $t=215$ is the smallest integer $\geq \sqrt{46009}$.
(ii) We calculate

$$
\begin{aligned}
& 215^{2}-46009=216 \\
& 216^{2}-46009=647 \\
& 217^{2}-46009=1080 \\
& 218^{2}-46009=1515 \\
& 219^{2}-46009=1952 \\
& 220^{2}-46009=2391 \\
& 221^{2}-46009=2832 \\
& 222^{2}-46009=3275 \\
& 223^{2}-46009=3720 \\
& 224^{2}-46009=4167 \\
& 225^{2}-46009=4616 \\
& 226^{2}-46009=5067 \\
& 227^{2}-46009=5520 \\
& 228^{2}-46009=5975 \\
& 229^{2}-46009=6432 \\
& 230^{2}-46009=6891 \\
& 231^{2}-46009=7352 \\
& 232^{2}-46009=7815 \\
& 233^{2}-46009=8280 \\
& 234^{2}-46009=8747 \\
& 235^{2}-46009=9216=96^{2} ;
\end{aligned}
$$

(iii) Thus $46009=235^{2}-96^{2}=(235-96)(235+96)=139 \cdot 331$ is a factorization. Since the two factors are primes we conclude this is the prime factorization.
d)
(i) We have $\sqrt{11021} \approx 104.98$, so $t=105$ is the smallest integer $\geq \sqrt{11021}$;
(ii) We calculate $105^{2}-11021=4=2^{2}$;
(iii) Thus we have that $11021=105^{2}-2^{2}=(105-2)(105+2)=103 \cdot 107$ is a factorization. Since the two factors are prime it is the prime factorization.

SECTION 6.1

Exercise 27. Let $R_{k} \equiv 2^{k!}(\bmod 7331117)$ for $k \in \mathbb{Z}_{>0}$. We have $R_{k+1} \equiv R_{k}^{k+1}(\bmod 7331117)$. We successively compute R_{k} and $\left(R_{k}-1,7331117\right)$ until the latter is different from 1 , in which case we have found a divisor of $7,331,117$. Indeed,

$$
\begin{array}{lll}
R_{1}=2^{1} \equiv 2 \quad(\bmod 7331117), & (1,7331117)=1 \\
R_{2}=2^{2} \equiv 4(\bmod 7331117), & (3,7331117)=1 \\
R_{3}=4^{3} \equiv 64(\bmod 7331117), & (63,7331117)=1 \\
R_{4}=64^{4} \equiv 2114982(\bmod 7331117), & (2114981,7331117)=1 \\
R_{5}=2114982^{5} \equiv 2937380 \quad(\bmod 7331117), & (2937379,7331117)=1 \\
R_{6}=2937380^{6} \equiv 6924877(\bmod 7331117), & (6924876,7331117)=1 \\
R_{7}=6924877^{7} \equiv 3828539 \quad(\bmod 7331117), & (3828538,7331117)=1 \\
R_{8}=3828539^{8} \equiv 4446618 \quad(\bmod 7331117), & (4446617,7331117)=641
\end{array}
$$

Thus $641 \mid 7331117$.

SECTION 8.1

Exercise 2. The Caeser cipher uses the encryption function $E(x)=x+3(\bmod 26)$ whose corresponding decryption function is $D(x)=x-3(\bmod 26)$. We apply D to the numerical values of the letters to obtain the message

I CAME I SAW I CONQUERED.

Exercise 6. We know that the decryption function corresponding to the affine encryption function $E(x)=3 x+24$ is given by

$$
D(y)=c y+d \quad(\bmod 26), \quad \text { where } \quad c=3^{-1} \equiv 9, \quad d \equiv-9 \cdot 24 \equiv 18 .
$$

Using D to decrypt the message we obtain PHONE HOME.

Problem 8. The most commonly occurring letter in the ciphertext is V (8 occurrences) which has numerical value of 21 . It is reasonable to guess this is the image of E, the most common letter in English. The numerical value of E is 4, therefore, the decryption function $D(y)=y-k$ must satisfy

$$
D(21)=21-k \equiv 4 \quad(\bmod 26),
$$

that is $k=17$. Using D to decode the ciphertext gives

Exercise 10. The most common letters in English are E and T (in this order), therefore it is reasonable to assume that E is encrypted as X and T is encrypted as Q. In terms of the affine encryption function $E(x)=a x+b(\bmod 26)$ this gives rise to the congruences

$$
4 a+b \equiv 23 \quad(\bmod 26) \quad \text { and } \quad 19 a+b \equiv 16 \quad(\bmod 26) .
$$

Subtracting the first congruence from the second gives $15 a \equiv-7(\bmod 26)$, hence $a \equiv 3$ $(\bmod 26)$. Then $b \equiv 23-12 \equiv 11(\bmod 26)$.

Thus the most likely values for a and b are $a=3$ and $b=11$.
Exercise 12. The two most frequent letters in the cipher text are M (7 occurrences) and R (6 occurrences). We guess these correspond to E and T. In terms of the affine transformation $E(x)=a x+b(\bmod 26)$ we get

$$
4 a+b \equiv 12 \quad(\bmod 26) \quad \text { and } \quad 19 a+b \equiv 17 \quad(\bmod 26) .
$$

Subtracting the first congruence from the second gives $15 a \equiv 5(\bmod 26)$. As $(5,26)=1$, this is equivalent to $3 a \equiv 1(\bmod 26)$, which gives $a \equiv 9(\bmod 26)$.
Thus $b \equiv 12-36 \equiv 2(\bmod 26)$. Then the encryption becomes $E(x)=9 x+2(\bmod 26)$ and its corresponding decryption function is

$$
D(y)=a^{-1} y-a^{-1} b=3 y-6 \quad(\bmod 26) .
$$

Using this the message decodes to
EVERY ALCHEMIST OF ANCIENT TIMES KNEW HOW TO TURN LEAD INTO GOLD.

SECTION 8.3

Exercise 6. The encryption function is $E(x)=x^{e}(\bmod p=29)$, where e is the encryption key which satisfies $(p-1, e)=(28, e)=1$. We know that

$$
E(20) \equiv 24 \quad(\bmod 29) \quad \Leftrightarrow \quad 20^{e} \equiv 24 \quad(\bmod 29) .
$$

We calculate

$$
\begin{aligned}
& 20^{2} \equiv 400 \\
& \equiv-6 \quad(\bmod 29), \\
& 20^{4} \equiv 36 \equiv 7 \quad(\bmod 29), \\
& 20^{8} \equiv 49 \equiv 20 \quad(\bmod 29),
\end{aligned}
$$

which shows that $20^{7} \equiv 1(\bmod 29)$. Dividing e by 7 with the division algorithm gives

$$
e=7 k+e^{\prime}, \quad 0 \leq e^{\prime} \leq 6 ;
$$

therefore

$$
20^{e} \equiv 20^{7 k+e^{\prime}} \equiv 20^{7 k} \cdot 20^{e^{\prime}} \equiv 20^{e^{\prime}} \equiv 24 \quad(\bmod 29) .
$$

We continue calculating

$$
\begin{gathered}
20^{3} \equiv 54 \equiv 25 \equiv-4 \quad(\bmod 29) \\
20^{5} \equiv 20^{2} \cdot 20^{3} \equiv(-6) \cdot(-4) \equiv 24 \quad(\bmod 29)
\end{gathered}
$$

to find that $e^{\prime}=5$. We guess that our encryption key is $e=e^{\prime}=5$ (i.e. $k=0$). To find the corresponding decryption key d we need to solve $5 d \equiv 1(\bmod \phi(29)=28)$. We obtain $d=17$
as a solution. The decryption function is $D(y)=y^{17}(\bmod 29)$ and the decoded message would become

061414030620041818
which corresponds to

GOOD GUESS.

SECTION 8.4

Exercise 2. Recall that for a quadratic polynomial $a x^{2}+b x+c$ its two roots are given by the quadratic resolvent formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

We note that

$$
\phi(n)=\phi(p q)=(p-1)(q-1)=p q-p-q+1=n-(p+q)+1
$$

and so

$$
-(p+q)=\phi(n)-n-1
$$

Note that p and q are roots of the quadratic polynomial $P(x)=(x-p)(x-q)$, which becomes

$$
P(x)=x^{2}-(p+q) x+p q=x^{2}+(\phi(n)-n-1) x+n .
$$

In our case, $n=4386607$ and $\phi(n)=4382136$ and this becomes

$$
P(X)=x^{2}+(4382136-4386607-1) x+4386607=x^{2}-4472 x+4386607 .
$$

Using the resolvent formula, we find the roots p and q of $P(x)$ to be

$$
x=\frac{4472 \pm \sqrt{4472^{2}-4 \cdot 1 \cdot 4386607}}{2}=1453 \text { and } 3019 .
$$

Exercise 8. The encryption key is $(e, n)=(5,2881)$.
We have $2881=43 \cdot 67$. Thus $\phi(n)=42 \cdot 66=2772$. Using the Euclidean Algorithm, we compute the decryption key, $d \equiv e^{-1}(\bmod 2772)$. This gives $d \equiv 1109(\bmod 2772)$. To decrypt the message, we raise each block in

$$
\begin{array}{llllllll}
0504 & 1874 & 0347 & 0515 & 2088 & 2356 & 0736 & 0468
\end{array}
$$

to the power of 1109 and reduce modulo 2881. This gives us

$$
\begin{array}{llllllll}
0400 & 1902 & 0714 & 0214 & 1100 & 1904 & 0200 & 1004
\end{array}
$$

or EAT CHOCOLATE CAKE.
Exercise 14. Let the moduli be n_{1}, n_{2}, n_{3} and write $n_{1}=p_{1} q_{1}, n_{2}=p_{2} q_{2}$ and $n_{3}=p_{3} q_{3}$, with p_{i}, q_{i} all prime and $p_{i} \neq q_{i}$ for fixed i.
First, using Euclidean Algorithm, we compute $\operatorname{gcd}\left(n_{1}, n_{2}\right), \operatorname{gcd}\left(n_{2}, n_{3}\right)$, and $\operatorname{gcd}\left(n_{1}, n_{3}\right)$. If one of these numbers is not 1 , say $\operatorname{gcd}\left(n_{1}, n_{2}\right) \neq 1$, then n_{1} and n_{2} have a prime factor in common, say $p_{1}=p_{2}$. Then $\operatorname{gcd}\left(n_{1}, n_{2}\right)=p_{1}$ and we have factored n_{1}, thus breaking the code. Thus can assume $\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{3}\right)=\operatorname{gcd}\left(n_{2}, n_{3}\right)=1$, that is, the moduli n_{1}, n_{2} and n_{3} are pairwise coprime.

We know that each encryption function is $E_{i}(x)=x^{3}\left(\bmod n_{i}\right)$ and from a plaintext message P we intercepted the three ciphertext messages C_{i} that satisfy $0 \leq C_{i}<n_{i}$ and

$$
P^{3} \equiv C_{1} \quad\left(\bmod n_{1}\right), \quad P^{3} \equiv C_{2} \quad\left(\bmod n_{2}\right), \quad P^{3} \equiv C_{3} \quad\left(\bmod n_{3}\right) .
$$

This means that the system of congruences

$$
x \equiv C_{1} \quad\left(\bmod n_{1}\right), \quad x \equiv C_{2} \quad\left(\bmod n_{2}\right), \quad x \equiv C_{3} \quad\left(\bmod n_{3}\right)
$$

has the solution P^{3}. On the other hand, by the CRT, there is a unique solution C to

$$
C \equiv C_{i} \quad\left(\bmod n_{i}\right), \quad \text { satisfying } \quad 0 \leq C \leq n_{1} n_{2} n_{3}-1 .
$$

Now, P satisfies $0 \leq P \leq \min \left\{n_{1}, n_{2}, n_{3}\right\}-1$, and so P^{3} is an integer satisfying

$$
0 \leq P^{3} \leq\left(\min \left\{n_{1}, n_{2}, n_{3}\right\}-1\right)^{3}<n_{1} n_{2} n_{3}-1,
$$

therefore $C=P^{3}$. We can apply CRT recipe to determine $P^{3}=C$ from the C_{i} and n_{i} and then recover P by taking the cube root.
Exercise 16. Write $n_{i}=p_{i} q_{i}$ and suppose $n_{1} \neq n_{2}$. If $\left(n_{1}, n_{2}\right)>1$ then $1<\left(n_{1}, n_{2}\right)<n_{1}$ and we can factor n_{1} as $n_{1}=\left(n_{1}, n_{2}\right) \cdot \frac{n_{1}}{\left(n_{1}, n_{2}\right)}$. Thus the two factors in this factorization correspond in some order to p_{1} and q_{1}. This allows to calculate $\phi(n)=\left(p_{1}-1\right)\left(q_{1}-1\right)$ and find $d \equiv e^{-1}$ $\bmod \phi(n)$, breaking the system.

SOLUTIONS TO PROBLEM SET 7

SECTION 13.1

Exercise 2. Note that for any integer a we have $a^{2} \equiv 0,1(\bmod 3)$, because

$$
0^{2} \equiv 0 \quad(\bmod 3), \quad 1^{2} \equiv 1 \quad(\bmod 3), \quad 2^{2}=4 \equiv 1 \quad(\bmod 3) .
$$

Let $x, y, z \in \mathbb{Z}_{>0}$ form a PPT, that is $(x, y, z)=1$ and $x^{2}+y^{2}=z^{2}$.
From the above $x^{2}+y^{2} \equiv z^{2} \equiv 0,1(\bmod 3)$, which implies that least one of x^{2} or y^{2} is congruent to 0 modulo 3 . WLOG we can assume $x^{2} \equiv 0(\bmod 3)$.
Therefore $x^{2}=x \cdot x=3 k$ for some integer $k \neq 0$. Since 3 is a prime we conclude that $3 \mid x$.
Suppose we also have $y^{2} \equiv 0(\bmod 3)$. Then, the same argument leads to $3 \mid y$. Thus $3 \mid x^{2}+y^{2}=z^{2}$, hence $3 \mid z$ which contradicts $(x, y, z)=1$. We conclude that $3+y$, as desired.

Exercise 3. Note that for an integer a we have $a^{2} \equiv 0, \pm 1(\bmod 5)$, because

$$
0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad 2^{2}=4 \equiv-1, \quad 3^{2}=9 \equiv-1, \quad 4^{2}=16 \equiv 1 \quad(\bmod 5) .
$$

Let $x, y, z \in \mathbb{Z}_{>0}$ form a PPT, that is $(x, y, z)=1$ and $x^{2}+y^{2}=z^{2}$.
From class or Lemma 13.1 in Rosen we have $(x, y)=(y, z)=(x, z)=1$, therefore 5 divides at most one of x, y, z, so if $5 \mid x$ or $5 \mid y$ the result follows.
To finish the proof, we assume that $5+x$ and $5+y$ and will show that $5 \mid z$. Indeed, from the calculations above it follows $x^{2} \equiv \pm 1(\bmod 5)$ and $y^{2} \equiv \pm 1(\bmod 5)$, therefore

$$
z^{2} \equiv x^{2}+y^{2} \equiv 0,2,-2 \quad(\bmod 5)
$$

Since we have $a^{2} \not \equiv \pm 2(\bmod 5)$ for all $a \in \mathbb{Z}$, we conclude $z^{2} \equiv 0(\bmod 5)$. Therefore, $z^{2}=z \cdot z=5 k$ for some integer $k \neq 0$ and since 5 is a prime it follows that $5 \mid z$, as desired.

Exercise 4. Note that for an integer a we have $a^{2} \equiv 0,1(\bmod 4)$, because

$$
0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad 2^{2}=4 \equiv 0, \quad 3^{2}=9 \equiv 1 \quad(\bmod 4) .
$$

Furthermore, we have $a^{2} \equiv 0(\bmod 4)$ if and only if a is even; and $a^{2} \equiv 1(\bmod 4)$ if and only if a is odd.
Let $x, y, z \in \mathbb{Z}_{>0}$ form a PPT, that is $(x, y, z)=1$ and $x^{2}+y^{2}=z^{2}$.
Suppose $2+x y$ then $z^{2} \equiv x^{2}+y^{2} \equiv 2(\bmod 4)$ which is impossible from the above. We conclude that $2 \mid x y$ and WLOG we suppose $2 \mid y$; furthermore, x and z are odd because we know that $(y, x)=(x, z)=1$.
Note that $a^{2} \equiv 1(\bmod 8)$ for any odd integer a, because

$$
1^{2} \equiv 1, \quad 3^{2}=9 \equiv 1, \quad 5^{2}=25 \equiv 1, \quad 7^{2}=49 \equiv 1 \quad(\bmod 8) .
$$

Therefore, $y^{2}=z^{2}-x^{2} \equiv 1-1 \equiv 0(\bmod 8)$, hence $8 \mid y^{2}$.

We have $y^{2}=y \cdot y=2 \cdot 2 \cdot 2 \cdot k$, for some integer $k \neq 0$. Since 2 is prime, we must have $2 \mid y$, i.e $y=2 k_{y}$; thus $2 k_{y} \cdot 2 k_{y}=2 \cdot 2 \cdot 2 \cdot k$ which implies $k_{y}^{2}=2 \cdot k$, hence $2 \mid k_{y}$. We conclude that $4 \mid y$.

Exercise 6. We want to show that the integers given by $x_{1}=3, y_{1}=4, z_{1}=5$ and

$$
x_{n+1}=3 x_{n}+2 z_{n}+1, \quad x_{n+1}=3 x_{n}+2 z_{n}+2, \quad x_{n+1}=4 x_{n}+3 z_{n}+2,
$$

define a PT for all $n \geq 1$. We note that the values produced by these formulas are always positive. We will use induction on n to show they also satisfy the Pythagorean relation.
Base: $n=1$. Clearly

$$
x_{1}^{2}+y_{1}^{2}=3^{2}+4^{2}=25=5^{2}=z_{1}^{2},
$$

so that x_{1}, y_{1}, z_{1} form a PT.
Induction hypothesis: $x_{n-1}^{2}+y_{n-1}^{2}=z_{n-1}^{2}$.
Inductive Step: $n>1$. First we observe that

$$
y_{n}=x_{n}+1
$$

and

$$
\begin{aligned}
z_{n}^{2} & =\left(4 x_{n-1}+3 z_{n-1}+2\right)^{2} \\
& =16 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+16 x_{n-1}+12 z_{n-1}+9 z_{n-1}^{2}+4 .
\end{aligned}
$$

We now compute

$$
\begin{aligned}
x_{n}^{2}+y_{n}^{2} & =x_{n}^{2}+\left(x_{n}+1\right)^{2} \\
& =2 x_{n}^{2}+2 x_{n}+1 \\
& =2\left(3 x_{n-1}+2 z_{n-1}+1\right)^{2}+2\left(3 x_{n-1}+2 z_{n-1}+1\right)+1 \\
& =18 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+18 x_{n-1}+12 z_{n-1}+8 z_{n-1}^{2}+5 \\
& =\left(2 x_{n-1}^{2}+2 x_{n-1}+1\right)+\left(16 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+16 x_{n-1}+12 z_{n-1}+8 z_{n-1}^{2}+4\right) \\
& =x_{n-1}^{2}+y_{n-1}^{2}+\left(16 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+16 x_{n-1}+12 z_{n-1}+8 z_{n-1}^{2}+4\right) \\
& =z_{n-1}^{2}+\left(16 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+16 x_{n-1}+12 z_{n-1}+8 z_{n-1}^{2}+4\right) \\
& =16 x_{n-1}^{2}+24 x_{n-1} z_{n-1}+16 x_{n-1}+12 z_{n-1}+9 z_{n-1}^{2}+4 \\
& =z_{n}^{2}
\end{aligned}
$$

where in the third to last equality we have used the induction hypothesis and on the last equality we used the expression for z_{n}^{2} above. We conclude that

$$
x_{n}^{2}+y_{n}^{2}=z_{n}^{2},
$$

that is x_{n}, y_{n}, z_{n} is a Pythagorean triple, as desired.
Exercise 13. Suppose that x, y, z is a PT with $z=y+2$. Then

$$
x^{2}+y^{2}=z^{2}=(y+2)^{2}=y^{2}+4 y+4,
$$

so that

$$
x^{2}=4(y+1)
$$

and, in particular, $2 \mid x^{2}$. Thus $2 \mid x$ and $x=2 k$ for some $k \in \mathbb{Z}_{>0}$. Substituting this back into the formula $x^{2}=4(y+1)$ yields

$$
x^{2}=(2 k)^{2}=4 k^{2}=4(y+1),
$$

so that $y=k^{2}-1$. Lastly, since $z=y+2$, we have $z=k^{2}+1$ and therefore the triple (x, y, z) is of the form

$$
(x, y, z)=\left(2 k, k^{2}-1, k^{2}+1\right) .
$$

Finally, we let $k \in \mathbb{Z}_{>0}$ and observe that

$$
(2 k)^{2}+\left(k^{2}-1\right)^{2}=4 k^{2}+k^{4}-2 k^{2}+1=k^{4}+2 k^{2}+1=\left(k^{2}+1\right)^{2},
$$

that is, for all $k>0$ the expression above produces PT such that $z=y+2$.

SECTION 13.2

Exercise 3. Recall Fermat's Little Theorem: if $a \in \mathbb{Z}$ satisfies $(a, p)=1$, then

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

(a) Clearly, if $p|x, p| y$ or $p \mid z$ then $p \mid x y z$. We now prove the contrapositive statement.

Suppose $p+x y z$, then $p+x, p+y$, and $p+z$, hence by FLT

$$
x^{p-1} \equiv y^{p-1} \equiv z^{p-1} \equiv 1 \quad(\bmod p) .
$$

Therefore,

$$
x^{p-1}+y^{p-1} \equiv 1+1=2 \not \equiv 1 \equiv z^{p-1} \quad(\bmod p),
$$

as desired.
(b) It follows from FLT that for any integer a we have $a^{p} \equiv a(\bmod p)$. Then,

$$
x^{p}+y^{p}=z^{p} \Longrightarrow x+y \equiv z \quad(\bmod p) \Leftrightarrow p \mid(x+y-z),
$$

as desired.
Exercise 5. We assume that $x^{4}-y^{4}=z^{2}$ has no solutions in non-zero integers.
Let x, y be the length of the legs and z the length of the hypotenuse of a right triangle with integer sides. WLOG we can assume that x, y, z form a PPT with even y. That is

$$
x^{2}+y^{2}=z^{2}, \quad(x, y, z)=1, \quad y=2 k, \quad k \in \mathbb{Z}
$$

From the classification of PPT (Theorem 13.1 in Rosen) we know there are coprime integers m, n such that

$$
m>n>0, \quad x=m^{2}-n^{2}, \quad y=2 m n, \quad z=m^{2}+n^{2} .
$$

Suppose now the area of the triangle is a square, that is

$$
\text { Area }=\frac{1}{2} x y=\left(m^{2}-n^{2}\right) m n=r^{2}, \quad r \in \mathbb{Z}_{>0} .
$$

Since m, n and $m^{2}-n^{2}$ are positive and pairwise coprime it follows that they are squares (by Proposition left as homework in class). More precisely, there are positive integers a, b and c such that

$$
m=a^{2}, \quad n=b^{2} \quad m^{2}-n^{2}=c^{2} .
$$

It now follows that $a^{4}-b^{4}=c^{2}$ which contradicts the first sentence.

