
Math 312, Summer Term 2018
Pre-Midterm Sheet

May 30, 2018

Material

The material for the exam consists of the material covered in the lectures up to
and including Wednesday, May 30th, as well as Problem Sets 1 through 3. Here
are some headings for the topics we covered (this is not comprehensive)

• Foundations of the natural numbers: well-ordering, proof by induction.

• Foundations of the integers: divisibility and division with remainder.

• The integers: GCD and LCM, Euclid’s Algorithm and Bezout’s Theorem,
primes and unique factorization, irrational numbers. Linear equations.

• Congruences and modular arithemtic: definition of congruence and con-
gruence classes; arithmetic in congruences; invertibility and inverses using
Euclid’s algorithm; solving congruences. Application: tests for divisibility
by 3, 9 and 11.

• Wilson’s Theorem, Fermat’s Little Theorem, multiplicative order.

Note: the historical discussion of the distribution of primes is not examinable.

Structure

The exam will consist of several problems. Problems can be calculational (only
the steps of the calculation are required), theoretical (prove that something
holds) or factual (state a Definition, Theorem, etc). The intention is to check
that the basic tools are at your fingertips. Generally, earlier problems are easier
than latter problems; the number of points a problem is worth should not be
used as an indication of difficulty.
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Sample problems

Check out the past final exams posted at http://www.math.ubc.ca/Ugrad/
pastExams/index.shtml#312. Here are a few more problems:

1. (Unique factorization)

(a) [calculational] Write 148 as a product of prime numbers.

(b) [factual] State the Theorem on unique factorization of natural num-
bers.

(c) [theoretical] Prove that every natural number can be written as a
product of primes..

2. Solve the following system of congruences{
x + y + z ≡ 4 (5)

3x + z ≡ 1 (5)

3. Prove by induction that an = n(n+1)
2 is an integer for all n ≥ 0.

4. (modular arithmetic)

(a) State the definition of a number invertible modulu m.

(b) List the invertible residue classes mod 15.

5. (Fermat’s Little Theorem) Let p be a prime number.

(a) Let 1 ≤ k ≤ p− 1. Show that p |
(
p
k

)
.

(b) Show that (a + b)
p ≡ ap + bp (p).

(c) Show by induction on a that for all a ≥ 0, ap ≡ a (p).

(d) Conclude that if if p - a then ap−1 ≡ 1 (p).

6. Find the least non-negative residue modulu 73 which is inverse to 10.

7. Let x, y, z be non-negative integers such that 5x = 6y + 7z.

(a) Use reduction mod 2 to show that y ≥ 1.

(b) Use reduction mod 6 to show that x is even.

(c) Use reduction mod 5 to show that z ≡ 2 (4) (in particular z > 0)

(d) Use reduction mod 8 to show that y ≥ 3.

(e) (hard) Now show that either 5x/2−7z/2 = 2 and 5x/2+7z/2 = 2y−1·3y
or 5x/2 − 7z/2 = 2y−1 and 5x/2 + 7z/2 = 2 · 3y.

(f) [not during an exam] Find all solutions to the original equation.
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Sample solutions

1. (Unique factorization)

(a) 148 = 2 · 74 = 22 · 37.

(b) Every positive integer can be written as a product of primes up,
uniquely to reordering the factors [Or: Every positive integer can be
uniquely represented by a product

∏
p p

ep over all primes p, where
ep ∈ Z≥0 and all but finitely many are zero).

(c) Assume that there are natural numbers which cannot be written as a
product of primes. Then by the well-ordering principle there is a least
such integer which we denote n. Then n > 1 (1 is the empty product)
and n is not prime (it would be equal to the product containing just
itself). n must therefore be composite – assume that n = ab with
1 < a, b < n. Since both a and b are smaller than n, they can both
be written as products of primes. Then n is the product of the two
products, a contradiction.

2. Let x, y, z be a solution. From the second congruence we find z ≡ 1−3x (5),
and substituting this into the second we find x + y + 1 − 3x ≡ 4 (5) so
that y ≡ 3 + 2x (5). It follows that every solution is of the form (x, y, z) =
(x, 3 + 2x + 5t, 1− 3x + 5s) for some x, s, t ∈ Z. Conversely, for x, y, z of
this form we have x+y+z = x+3+2x+5t+1−3x+5s = 4+5(s+t) ≡ 4 (5)
and 3x + z = 3x + 1− 3x + 5s = 1 + 5s ≡ 1 (5), so the set of solutions is
{(x, 3 + 2x + 5t, 1− 3x + 5s) | x, s, t ∈ Z}.

3. For n = 0 we have a0 = 0, which is an integer. We also have an+1 − an =
(n+1)(n+2)

2 − n(n+1)
2 = n+1

2 [n + 2− n] = n + 1 so that an+1 = an + n + 1.
It follows that if an is an integer so is an+1.

4. (modular arithmetic)

(a) An integer a is invertible mod m if there is an integer b such that
ab ≡ 1 (m).

(b) We know that a is invertible mod m iff (a,m) = 1, so the invertible
residue classes mod 15 are those of 1, 2, 4, 7, 8, 11, 13, 14.

5. (Fermat’s Little Theorem) Let p be a prime number.

(a) Clearly p|p!. On the other hand if k < p then p - k! since p does not
divide the factors of k!. If k ≥ 1 then p−k < p so also p - (n−k)!. So
in
(
p
k

)
= p!

k!(p−k)! , p divides the numerator but not the denominator.
Since the ratio is an integer it must be divisible by p.

(b) By the Binomial Theorem, (a + b)
p

=
∑p

k=0

(
p
k

)
akbp−k = ap+

∑p−1
k=1

(
p
k

)
akbp−k+

bp. We have just seen that
(
p
k

)
≡ 0 (p) in for 1 ≤ k ≤ p− 1, so we are

left with (a + b)p ≡ ap + bp (p).
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(c) We have 0p = 0. Also, by part (b), (a + 1)
p ≡ ap + 1p (p) so if

ap ≡ a (p) we have (a + 1)
p ≡ a + 1 (p) as claimed.

(d) If p - a then a is invertible mod p. Let ā be such an inverse. Multiply-
ing both sides of ap ≡ a (p) by ā we find ap−1 = ap−1 · 1 ≡ ap−1aā =
apā ≡ aā ≡ 1 (p).

6. Following Euclid’s algorithm we have 3 = 73− 7 · 10 and 1 = 10− 3 · 3 =
22 · 10− 3 · 73. It follows that 22 · 10 ≡ 1 (73), so 22 is inverse to 10 mod
73.. Since 0 ≤ 22 < 73, 22 is the least non-negative residue.

7. Let x, y, z be non-negative integers such that 5x = 6y + 7z.

(a) 5x and 7z are always odd (even if x = 0 or z = 0). It follows that 6y

is even, while 60 = 1 is odd.

(b) Since y ≥ 1, 6y is divisible by 6. Since 5 ≡ −1 (6) and 7 ≡ 1 (6) is
follows that (−1)x ≡ 1z = 1 (6). For x odd, (−1)x = −1 6≡ 1 (6) so x
is even.

(c) We cannot have x = 0 since the RHS is at least 6, so 5|5x. Reducing
mod 5 we find 0 ≡ 1y + 2z (5) that is 2z ≡ −1 (5). Since 22 = 4 ≡
−1 (5) while 24 = 16 ≡ 1 (5) the order of 2 mod 5 is 4 (if not 4 is
would be a divisor but we ruled out 2). Since 2 has order 4 mod 5
and 22 ≡ −1 (5) we have 7y ≡ −1 (5) iff y ≡ 2 (4).

(d) Mod 8 we have 52 = 24 + 1 ≡ 1 (8) and 72 ≡ (−1)2 = 1 (8) so the
same holds for any even power. It follows that 1 ≡ 6y + 1 (8) that is
that 23|2y3y.

(e) We have 2y3y = 7z − 5z =
(
5x/2 + 7z/2

) (
5x/2 − 7z/2

)
since both

x, z are even. The sum of the two numbers A = 5x/2 + 7z/2 and
B = 5x/2 − 7z/2 is 2 · 5x/2 which is not divisible by 3, so one of the
factors must be divisible by 3y. The other factor is then at most 2y

so we must have A = 3y2r and B = 2s where r + s = y. A,B are
both even (x, z ≥ 2) so r, s ≥ 1 but since 4 - A + B not both of r, s
are at least 2. It follows that r = 1 or s = 1.

(f) B = 2 is impossible since reducing mod 6 this means (−1)x/2 −
1 ≡ 2 (6) that is (−1)x/2 ≡ 3 (6) whereas the powers of −1 are ±1.
B = 2y−1 and A = 2 · 3y is also impossible: reducing these mod 7 we
find 5x/2 ≡ 2y−1 ≡ 2 · 3y (7) that is 2y ≡ 4 · 3y (7). Multiplying by
2 · 4y this reads 2 ≡ 2 · (2 · 4)y ≡ 2 · 4 · (3 · 4)y ≡ 5y (7) so y ≡ 4 (6)
and 8|B, that is5x/2 − 7z/2 ≡ 0 (8). The powers of 5 mod 8 are 5, 1
and of 7 are 7, 1 so both x/2 and z/2 are even. Factoring again we
have

(
5x/4 + 7z/4

) (
5x/4 − 7z/4

)
= 2y−1. Again both factors cannot

be divisible by 4, but now both are powers of 2 so 5x/4 − 7z/4 = 2.
We have already seen that this cna’t happen (the case B = 2) so the
equation has no solutions.
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