The exponential

1. Products of absolutely convergent series.
 (a) Let V be a normed space, and let $T, S \in \text{End}_b(V)$ commute. Show that $\exp(T + S) = \exp(T) \exp(S)$.

 (b) Show that, for appropriate values of t, $\exp(A) \exp(B) \neq \exp(A + B)$ where $A = \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ -t & 0 \end{pmatrix}$.

Companion matrices

DEF The companion matrix associated with the polynomial $p(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ is

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}.$$

2. A sequence $\{x_k\}_{k=0}^{\infty}$ is said to satisfy a linear recurrence relation if for each k,

$$x_{k+n} = \sum_{i=0}^{n-1} a_i x_{k+i}.$$

(a) Define vectors $\mathbf{v}^{(k)} = (x_{k-n+1}, x_{k-n+2}, \ldots, x_k)$. Show that $\mathbf{v}^{(k+1)} = C \mathbf{v}^{(k)}$ where C is the companion matrix.

(b) Find x_{100} if $x_0 = 1$, $x_1 = 2$, $x_2 = 3$ and $x_n = x_{n-1} + x_{n-2} - x_{n-3}$.

PRAC Find the Jordan canonical form of $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

3. Let C be the companion matrix associated with the polynomial $p(x) = x^n - \sum_{k=0}^{n-1} a_k x^k$.

(a) Show that $p(x)$ is the characteristic polynomial of C.

(b) Show that $p(x)$ is also the minimal polynomial.

(c) Find (with proof) an eigenvector with eigenvalue λ.

(**d) Let g be a polynomial, and let \mathbf{v} be the vector with entries $v_k = \lambda^k g(k)$ for $0 \leq k \leq n-1$.

Show that, if the degree of g is small enough (depending on p, λ), then $((C - \lambda) \mathbf{v})_k = \lambda \left(g(k+1) - g(k) \right) \lambda^k$ and (the hard part) that $((C - \lambda) \mathbf{v})_{n-1} = \lambda \left(g(n) - g(n-1) \right) \lambda^{n-1}$.

(**e) Find the Jordan canonical form of C.

118
Holomorphic calculus

Let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) be a power series with radius of convergence \(R \). For a matrix \(A \) define \(f(A) = \sum_{m=0}^{\infty} a_m A^m \) if the series converges absolutely in some matrix norm.

5. Let \(D = \text{diag} (\lambda_1, \cdots, \lambda_n) \) be diagonal with \(\rho(D) < R \) (that is, \(|\lambda_i| < R\) for each \(i \)). Show that \(f(D) = \text{diag} (f(\lambda_1), \cdots, f(\lambda_n)) \).

6. Let \(A \in M_n(\mathbb{C}) \) be a matrix with \(\rho(A) < R \).

 (a) [review of power series] Let \(R' \) satisfy \(\rho(A) < R' < R \). Show that \(|a_m| \leq C (R')^{-m} \) for some \(C > 0 \).

 (b) Using PS8 problem 3(a) show that \(f(A) \) converges absolutely with respect to any matrix norm.

 (*c) Suppose that \(A = S (D + N) S^{-1} \) where \(D + N \) is the Jordan form (\(D \) is diagonal, \(N \) upper-triangular nilpotent). Show that

 \[f(A) = S \left(\sum_{k=0}^{n} \frac{f^{(k)}(D)}{k!} N^k \right) S^{-1}. \]

 Hint: \(D, N \) commute.

 RMK1 This gives an alternative proof that \(f(A) \) converges absolutely if \(\rho(A) < R \), using the fact that \(f^{(k)}(D) \) can be analyzed using single-variable methods.

 RMK2 Compare your answer with the Taylor expansion \(f(x + y) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} y^k \).

 (d) Apply this formula to find \(\exp(tB) \) where \(B \) is as in PS9 problem 2.

7. Let \(A \in M_n(\mathbb{C}) \). Prove that \(\det(\exp(A)) = \exp(\text{Tr}A) \).

Supplementary problems

A. Let \(p \in \mathbb{C}[x] \) be a polynomial, let \(D' \) be the derivative operator for distributions in \(C^\infty_c(\mathbb{R})' \). Show that \(\varphi \in C^\infty_c(\mathbb{R})' \) satisfies \(p(D') \varphi = 0 \) iff \(\varphi \) is given by integration against a function \(f \) such that \(p(D) f = 0 \).