Lior Silberman’s Math 412: Problem Set 6 (due 26/10/2016)

P1. (Minimal polynomials)
Let \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}. \)

(a) Find the minimal polynomial of \(A \) and show that the minimal polynomial of \(B \) is \(x^2(x-1)^2 \).
(b) Find a \(3 \times 3 \) matrix whose minimal polynomial is \(x^2 \).

P2. For each of \(A, B \) find its eigenvalues and the corresponding generalized eigenspaces.

Triangular matrices

P3. Let \(L \) be a lower-triangular square matrix with non-zero diagonal entries. Find a formula for its inverse.

1. Let \(U \) be an upper-triangular square matrix with non-zero diagonal entries.
 (a) Give a “backward-substitution” algorithm for solving \(Ux = b \) efficiently.
 (b) Explicitly use your algorithm to solve \(\begin{pmatrix} 1 & 4 & 5 \\ 2 & 6 & 3 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \).
 (c) Give a formula for \(U^{-1} \), proving in particular that \(U \) is invertible and that \(U^{-1} \) is again upper-triangular.

RMK We’ll see that if \(\mathcal{A} \subset M_n(F) \) is a subspace containing the identity matrix and closed under matrix multiplication, then the inverse of any matrix in \(\mathcal{A} \) belongs to \(\mathcal{A} \). This applies, in particular, to the set of upper-triangular matrices.

The minimal polynomial

2. Let \(D \in M_n(F) = \text{diag}(a_1, \ldots, a_n) \) be diagonal.
 (a) For any polynomial \(p \in F[x] \) show that \(p(D) = \text{diag}(p(a_1), \ldots, p(a_n)) \).
 (b) Show that the minimal polynomial of \(D \) is \(m_D(x) = \prod_{j=1}^r (x-a_{i_j}) \) where \(\{a_{i_j}\}_{j=1}^r \) is an enumeration of the distinct values among the \(a_i \).
 (c) Show that (over any field) the matrix \(B \) from problem P1 is not similar to a diagonal matrix.
 (d) Now suppose that \(U \) is an upper-triangular matrix with diagonal \(D \). Show that for any \(p \in F[x], p(U) \) has diagonal \(p(D) \). In particular, \(m_D|_{m_U} \).

3. Let \(T \in \text{End}(V) \) be diagonalizable. Show that every generalized eigenspace is simply an eigenspace.

4. Let \(S \in \text{End}(U), T \in \text{End}(V) \). Let \(S \oplus T \in \text{End}(U \oplus V) \) be the “block-diagonal map”.
 (a) For \(f \in F[x] \) show that \(f(S \oplus T) = f(S) \oplus f(T) \).
 (b) Show that \(m_{S \oplus T} = \text{lcm}(m_S, m_T) \) (“least common multiple”: the polynomial of smallest degree which is a multiple of both).
 (c) Conclude that \(\text{Spec}_F(S \oplus T) = \text{Spec}_F(S) \cup \text{Spec}_F(T) \).

RMK See also problem B below.
5. Let $R \in \text{End}(U \oplus V)$ be “block-upper-triangular”, in that $R(U) \subset U$.
 (a) Define a “quotient linear map” $\tilde{R} \in \text{End}(U \oplus V/U)$.
 (b) Let S be the restriction of R to U. Show that both m_S, m_R divide m_R.
 (c) Let $f = \text{lcm}[m_S, m_R]$ and set $T = f(R)$. Show that $T(U) = \{0\}$ and that $T(V) \subset U$.
 (d) Show that $T^2 = 0$ and conclude that $f | m_R | f^2$.
 (e) Show that $\text{Spec}_F(R) = \text{Spec}_F(S) \cup \text{Spec}_F(\tilde{R})$.

Supplementary problems

A. (Cholesky decomposition)

(a) Let A be a positive-definite square matrix. Show that $A = LL^\dagger$ for a unique lower-triangular matrix L with positive entries on the diagonal.

DEF For $\varepsilon \in \pm 1$ define $D_\varepsilon \in M_n(\mathbb{R})$ by $D_{ij}^\varepsilon = \begin{cases} \varepsilon & j = i + \varepsilon \\ -\varepsilon & j = i \\ 0 & j \neq i, i + \varepsilon \end{cases}$

(positive) discrete Laplace operator.

(b) To $f \in C^\infty(0, 1)$ associate the vector $\frac{1}{n}D_{+}f$ and $\frac{1}{n}D_{-}f$ are both close to f'' (so that both are discrete differentiation operators). Show that $\frac{1}{n^2}D_{-}D_{+}$ is an approximation to the second derivative.

(c) Find a lower-triangular matrix L such that $LL^\dagger = A$.

B. Let $T \in \text{End}(V)$. For monic irreducible $p \in \mathbb{F}[x]$ define $V_p = \{ v \in V \mid \exists k : p(T)^k v = 0 \}$.

(a) Show that V_p is a T-invariant subspace of V and that $m_T|_{V_p} = p^k$ for some $k \geq 0$, with $k \geq 1$ iff $V_p \neq \{0\}$. Conclude that $p^k|_{m_T}$.

(b) Show that if $\{p_i\}_{i=1}^V \subset \mathbb{F}[x]$ are distinct monic irreducibles then the sum $\bigoplus_{i=1}^V V_{p_i}$ is direct.

(c) Let $\{p_i\}_{i=1}^V \subset \mathbb{F}[x]$ be the prime factors of $m_T(x)$. Show that $V = \bigoplus_{i=1}^V V_{p_i}$.

(d) Suppose that $m_T(x) = \prod_{i=1}^V p_i^{k_i}(x)$ is the prime factorization of the minimal polynomial. Show that $V_{p_i} = \text{Ker} p_i^{k_i}(T)$.

C. (more on extension of scalars) Let $F \subset K$ be fields and let V be an F-vectorspace. Let $V_K = K \otimes_F V$ thought of as a K-vectorspace.

(a) (Repeat of supplement to Problem 1 of PS5) For $T \in \text{Hom}_F(U, V)$ let $T_K = \text{Id}_K \otimes_F T \in \text{Hom}_F(U_K, V_K)$ be the tensor product map. Show that $T_K \in \text{Hom}_K(U_K, V_K)$ (that is, K linear and not only F-linear).

(b) Let $\{u_j\}_{j \in J} \subset U$, $\{v_i\}_{i \in I} \subset V$ be a bases. Show that the matrix of T_K wrt the bases $\{1 \otimes u_j\}_{j \in J} \subset U_K$, $\{1 \otimes v_i\}_{i \in I} \subset V_K$ is the matrix of T wrt $\{u_j\}_{j \in J}$, $\{v_i\}_{i \in I}$.

(c) Show that the minimal and characteristic polynomials of T_K are those of T (through the inclusion of F in K).