1. **What is a DE?**

(1) Consider the differential equation $y' = 3y^2$

(a) For which values of C, D is $f(x) = Cx^D$ a solution to the equation?

(b) Suppose $f(x)$ is a solution. Show that $f(x-a)$ is also a solution for any a. What is the solution with $f(0) = 1$?

2. **Separation of variables**

(2) Solve the following equations using separation of variables

(a) $y' = x^3$

(b) $y' = 5y$

(c) (Final, 2012) $y' = xy$, $y(0) = e$.

Date: 29/2/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(3) (Final 2014) Find the solution of the DE $x \frac{dy}{dx} + y = y^2$ that satisfies $y(1) = -1$.

(4) A physical system satisfies the equation $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E$. There m, k, E are constants (mass, spring constant, energy, respectively) and $v = \frac{dx}{dt}$ is the velocity.

(a) Solve the equation to obtain $\frac{dx}{dt} = v = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E$

(b) Suppose $m = k = 1$ and $E = \frac{1}{2}$. Integrate both sides of $\frac{dx}{\sqrt{1-x^2}} = dt$ and find a formula for $x = x(t)$.

(c) Solve the problem for general m, k, E.