Math 101 – SOLUTIONS TO WORKSHEET 17
APPROXIMATE INTEGRATION

1. APPROXIMATE INTEGRATION

(1) Let \(f(x) = \sin(x^2) \). Estimate \(\int_0^1 f(x) \, dx \) using the trapezoid rule, the midpoint rule, and Simpson’s rule, with \(n = 4 \) in all cases. You may leave your answers in calculator-ready form.

Solution: With \(n = 4 \) we have \(\Delta x = \frac{1}{4} \) and the points \(0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1 \), so the approximations are:

\[
\int_0^1 f(x) \, dx \approx \frac{1}{8} \left(\sin(0^2) + 2\sin \left(\frac{1}{4} \right)^2 + 2\sin \left(\frac{1}{2} \right)^2 + 2\sin \left(\frac{3}{4} \right)^2 + \sin(1^2) \right)
\]

\[
= \frac{1}{8} \left(2\sin \left(\frac{1}{16} \right) + 2\sin \left(\frac{1}{4} \right) + 2\sin \left(\frac{9}{16} \right) + \sin(1) \right),
\]

\[
\int_0^1 f(x) \, dx \approx \frac{1}{4} \left(\sin \left(\frac{1}{8} \right)^2 + \sin \left(\frac{9}{64} \right) + \sin \left(\frac{25}{64} \right) + \sin \left(\frac{49}{64} \right) \right)
\]

and

\[
\int_0^1 f(x) \, dx \approx \frac{1}{12} \left(\sin(0) + 4\sin \left(\frac{1}{16} \right) + 2\sin \left(\frac{1}{4} \right) + 4\sin \left(\frac{9}{16} \right) + \sin(1) \right)
\]

\[
= \frac{1}{12} \left(4\sin \left(\frac{1}{16} \right) + 2\sin \left(\frac{1}{4} \right) + 4\sin \left(\frac{9}{16} \right) + \sin(1) \right).
\]

(2) (Final 2009) Give the Simpson’s rule approximation to \(\int_0^2 \sin(e^x) \, dx \) using 4 equal subintervals.

Solution: Here \(\Delta x = \frac{2}{4} = \frac{1}{2} \), the points are \(0, \frac{1}{2}, 1, \frac{3}{2}, 2 \) and so the approximation is

\[
\frac{1}{6} \left(\sin(e^0) + 4\sin \left(e^{1/2} \right) + 2\sin(1) + 4\sin \left(e^{3/2} \right) + \sin(e^2) \right)
\]

which is

\[
\frac{1}{6} \left(\sin(1) + 4\sin \left(e^{1/2} \right) + 2\sin(e) + 4\sin \left(e^{3/2} \right) + \sin(e^2) \right).
\]

(3) (Final 2012) Let \(I = \int_{1/2}^1 \frac{x}{x} \, dx \).

(a) Write down Simpson’s rule approximation for \(I \) using 4 points (call it \(S_4 \))

Solution: \(S_4 = \frac{1}{12} \left(\frac{1}{1} + 4\pi/4 + 2\pi/2 + 4\pi/4 + \frac{1}{2} \right) \).

It was not required to do the arithmetic, but for the record we note (since \(210 = 2 \cdot 3 \cdot 5 \cdot 7 \)):

\[
S_4 = \frac{1}{12} \left(1 + \frac{16}{5} + \frac{4}{3} + \frac{16}{7} + \frac{1}{2} \right)
= \frac{1}{12} \left(210 + 42 \cdot 16 + 70 \cdot 3 + 30 \cdot 16 + 105 \right)
= \frac{1677}{2520}.
\]

(b) Without computing \(I \), find an upper bound for \(|I - S_4| \). You may use the fact that if \(|f^{(4)}(x)| \leq K \) on \([a, b] \) then the error in the approximation with \(n \) points has magnitude at most \(K(b - a)^5/180n^4 \).
We have \(f'(x) = -\frac{1}{x^2} \), \(f''(x) = \frac{2}{x^3} \), \(f'''(x) = -\frac{6}{x^4} \) and \(f^{(4)}(x) = \frac{24}{x^5} \). On the interval \([1, 2]\), the function \(\frac{24}{x^5} \) is decreasing so \(|f^{(4)}(x)| \leq \frac{24}{x^5} = 24 \). It follows that the error is at most
\[
\frac{24(2-1)^5}{180 \cdot 4^4} = \frac{24}{180 \cdot 256} = \frac{1}{60 \cdot 32} = \frac{1}{1920}.
\]

(4) (Final 2008) Let \(I = \int_0^1 \cos(x^2) \, dx \). It can be shown that the fourth derivative of \(\cos(x^2) \) has absolute value less than or equal to 0.001. You may use that that if \(|f^{(4)}(t)| \leq K \) for \(a \leq t \leq b \) then error in using Simpson’s rule to approximate \(\int_a^b f(x) \, dx \) has absolute value less than or equal to \(K(b-a)^3/180n^4 \).

Solution: For \(f(x) = \cos(x^2) \) we are given that \(|f^{(4)}(x)| \leq 60 \) for \(1 \leq x \leq 2 \), so we need \(n \) such that
\[
\frac{60 \cdot (1-0)^5}{180n^4} \leq \frac{1}{1000},
\]
which is the same as
\[
n^4 \geq \frac{1000}{3}.
\]
Now for \(n = 6 \) we have \(6^4 = 36 \cdot 6 \geq 30 \cdot 30 = 900 > \frac{1000}{3} \) so \(n = 6 \) suffices.

(5) Let \(I = \int_4^6 \sin(\sqrt{x}) \, dx \). Find \(n \) such that estimating \(I \) using the midpoint rule and \(n \) points will have an error of at most \(\frac{1}{1000} \). You may use that the absolute error in estimating \(\int_a^b f(x) \, dx \) using the midpoint rule and \(n \) points is at most \(K(b-a)^3/24n^2 \) where \(|f^{(4)}(x)| \leq K \) for \(a \leq x \leq b \).

Solution: Let \(f(x) = \sin(\sqrt{x}) \). Then \(f'(x) = \frac{1}{2\sqrt{x}} \cos(\sqrt{x}) \) so \(f''(x) = \frac{1}{4x^{3/2}} \cos(\sqrt{x}) - \frac{1}{4x} \sin(\sqrt{x}) \). For \(4 \leq x \leq 6 \) we have \(\frac{1}{4x^{3/2}} \leq \frac{1}{4 \cdot 4^{3/2}} = \frac{1}{32} \) \((\frac{1}{x^{3/2}} \) is decreasing on this interval) and \(\frac{1}{4x} \leq \frac{1}{4 \cdot 4} = \frac{1}{16} \) (for the same reason). Since \(|\cos(\sqrt{x})|, |\sin(\sqrt{x})| \leq 1 \) for all \(x \), we have
\[
|f''(x)| \leq \frac{1}{32} + \frac{1}{16} = \frac{3}{32} \leq \frac{3}{30} = \frac{1}{10}
\]
for all \(4 \leq x \leq 6 \). It follows that the error in the approximation is at most
\[
\frac{1}{10} \cdot \frac{(6-4)^3}{24 \cdot n^2} = \frac{8}{240n^2} = \frac{1}{30n^2}.
\]
For \(n = 10 \) the error would be at most \(\frac{1}{30000} = \frac{1}{3000} \) so that is enough.