Math 101 – SOLUTIONS TO WORKSHEET 4
THE FUNDAMENTAL THEOREM OF CALCULUS

(1) (Differentiating integrals) Evaluate
(a) \(\frac{d}{dx} \int_{0}^{x} e^{t^2} \, dt \)

Solution: By the FTC this is \(e^{x^2} \).

(b) \(\frac{d}{dx} \int_{x}^{1} e^{t^2} \, dt \)

Solution: \(\int_{x}^{1} e^{t^2} \, dt = -\int_{1}^{x} e^{t^2} \, dt. \) Applying the FTC we get \(-e^{x^2} \).

(c) (Final 2009) \(\frac{d}{dx} \int_{x}^{c} \cos t \, dt \)

Solution: Fix \(c \), and let \(F(u) = \int_{c}^{u} \cos t \, dt. \) Then \(\int_{x}^{c} \cos t \, dt = \int_{c}^{x} \cos t \, dt - \int_{c}^{x} \cos t \, dt \)

so we need to compute \(\frac{d}{dx} \left(F(e^x) - F(x^2) \right) \).

By the chain rule this is \(F'(e^x)e^x - F'(x^2)(2x) = \sqrt{\cos(e^x)}e^x - 2x \sqrt{\cos(x^2)}. \)

(d) (Final 2014) Let \(f(x) = \int_{1}^{x} 100(t^2 - 3t + 2)e^{-t^2} \, dt. \) Find the interval(s) on which \(f \) is increasing.

Solution: By the FTC, \(f'(x) = 100(x^2 - 3x + 2)e^{-x^2} = 100(x - 2)(x - 1)e^{-x^2}, \) which is positive on \((-\infty, 1) \cup (2, \infty) \).

(2) Evaluate using anti-derivatives
(a) (Final 2012) \(\int_{1}^{2} \frac{x^2 + 2}{x^2 + 4} \, dx = \)

Solution: \(\int_{1}^{2} \left(1 + \frac{2}{x^2} \right) \, dx = \left[x - \frac{2}{x} \right]_{x=1}^{x=2} = (2 - 1) - (1 - 2) = 2. \)

(b) (Final 2007) \(\int_{-1}^{0} (2x - e^x) \, dx = \)

Solution: \(F(x) = x^2 - e^x \) is an anti-derivative, so \(\int_{-1}^{0} (2x - e^x) \, dx = \left[x^2 - e^x \right]_{x=-1}^{x=0} = 0 - e^0 - ((-1)^2 - e^{-1}) = -2 + \frac{1}{e}. \)

(c) \(\int_{3}^{10} (x^{5/2} + e^{2x}) \, dx = \)

Solution: An anti-derivative is \(\frac{2}{7}x^{7/2} + \frac{1}{2}e^{2x} \) so the answer is \(\left[\frac{2}{7}x^{7/2} + \frac{1}{2}e^{2x} \right]_{x=3}^{x=10} = \frac{2}{7}10^{7/2} + \frac{1}{2}e^{20} - \frac{2}{7}3^{7/2} - \frac{1}{2}e^{6}. \)

Date: 11/1/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.