1. Average Value

In this note I collect a few examples of computing the average value of a function, and some example problems using it.

Definition. Let \(f \) be defined and integrable on \([a, b] \). The average value of \(f \) on the interval is

\[
\bar{f} = \frac{1}{b-a} \int_a^b f(x) \, dx.
\]

Remark 1. A Riemann sum for \(\int_a^b f(x) \, dx \) is \(\sum_{i=1}^{n} f(x_i^*) \Delta x = \sum_{i=1}^{n} f(x_i^*) \frac{b-a}{n} \); dividing by \(b-a \) we see that a Riemann sum of the integral above is:

\[
\frac{1}{n} \sum_{i=1}^{n} f(x_i^*).\]

In other words, the average value of \(f \) on the interval is the limit of averages of values of \(f \) at sample points.

In straightforward problems you are given \(f, a, b \) and asked to compute the average. In more complicated problems \(a, b \) or \(f \) itself may depend on a parameter, and you need to have the confidence to compute the average in terms of the parameter, getting a formula instead of a numerical answer for the average value. You can then solve for the parameter using given information.
2. Straight-up problems

In these problems, simply compute the average value of the given function on the given interval.

(1) $f(x) = e^{5x} + x\sqrt{x^2 + 1}$ on the interval $[-1, 2]$.

(2) (Final, 2009) $f(\theta) = |\sin \theta - \cos \theta|$ on $[0, \frac{\pi}{2}]$.

(3) (Final, 2011) $f(x) = xe^x$ on $[0, 2]$.
3. Problems involving a parameter

In the following problems, one piece of information (the function \(f \) or the interval) depends on a parameter. You need to compute the average value using the parameter, and then solve for the parameter.

(1) (Final, 2012) Let \(k \) be a positive constant. Find the average value of \(f(x) = \sin(kx) \) on \([0, \pi/k]\).

(2) Let \(f(x) = x \sqrt{x^2 + r^2} \). For what value of \(r > 0 \) is the average value of \(f \) on \([0, 3]\) equal to \(\frac{1}{2} \)?

(3) (Final, 2010) Find a number \(b > 0 \) such that the function \(f(x) = x - 1 \) has average value 0 on the interval \([0, b]\).