Two from PS10:

1) (c): A abelian, \(A/\text{Atoms} \) is torsion-free

\[\text{Pf: } q : A \to A/\text{Atoms} \text{ is the quotient map} \]

suppose \(\bar{a} \in (A/\text{Atoms})_{\text{tors}} \), say \(\bar{a} = q(a) \)

By assumption, for some \(k \to 0 \), \(\bar{a}^k = e \), i.e. \(q(a)^k = e \), i.e. \(q(a) = e \), so \(a^k \in \text{Ker}(q) \), i.e. \(a^k \in \text{Atoms} \)

This means \(\exists l \) s.t. \((a^l)^k = e \), so \(a = e \), \(a \in \text{Atoms} \), and \(\bar{a} = q(a) = e \).

Observe: we showed: if \(G \) any gp, \(N \triangleleft G \), \(N \subset G_{\text{tors}} \) and if \(g \in G \) is torsion mod \(N \), then \(g \in G_{\text{tors}} \)

\[gN \in (G/N)_{\text{tors}} \]

4) (b): Say \(G/Z(G) \) abelian. Show \(G_{\text{tors}} \) is a subgroup

\[\text{Pf: let } xy \in G_{\text{tors}}. \text{ Need to show } xy \in G_{\text{tors}} \]

Saw: \([x,y] \in Z(G)_{\text{tors}} \), if \([x,y] = e \) then \(xy \in G_{\text{tors}} \)

Consider images \(\bar{x}, \bar{y} \) of \(x, y \) in \(G/Z(G)_{\text{tors}} \).

\(Z(G)_{\text{tors}} \) is a subgroup of \(Z(G) \) (\(Z(G) \) is abelian)

is normal in \(G \) because for \(g \in G, x \in Z(G)_{\text{tors}} \), \(g^{-1}xg = x \)

\(x, y \) torsion in \(G/Z(G)_{\text{tors}} \) (in general: if \(x = e \) then \(f(x) = e \) for any hom \(f : G \to H \))

Also, \(x, y \) commute:

\[[x,y] = [q(x), q(y)] = q(x)q(y)q(x)^{-1}q(y)^{-1} = q(xyx^{-1}y^{-1}) = q([x,y]) = e \]

where \(q : G \to G/Z(G)_{\text{tors}} \) is quot. map
so \(xy = g(xy) \) is torsion (if \(x \neq e, y \neq e \), \((xy)^k = e \))

By observation above, \(xy \in G_{\text{tors}} \) too.

Suppose \(G/\tau(G) \) is two step-nilpotent.
(say "\(G \) is three-step nilpotent"). Again \(G_{\text{tors}} \) is a subgroup.

Let \(x, y \in G_{\text{tors}} \). Consider images of \(x, y \) in \(G/\tau(G) \). These are torsion elements there, by \((G/\tau(G))_{\text{tors}} \) is a subgroup, so \((xy)^t \) is torsion, i.e. \((xy) \in \tau(G) \) for some \(k \).

Not done. don't know \((xy)^k \in \tau(G)_{\text{tors}} \).

Def: \(G \) is \(k \)-step nilpotent if \(G = Z(G) \) but \(G/\tau(G) \) is.

Def: \(G \) is \((k+1)\)-step nilpotent if \(G \) is not \(k \)-step nilpotent. \(G/\tau(G) \) is.

Example: Finite \(p \)-groups are nilpotent.

Pri: By induction on order: if \(G \) finite \(p \)-gp. \(Z(G) \neq \{1\} \), show: \(G \) nilp, \(G/\tau(G) \) nilp.

So \(G/\tau(G) \) is smaller, by induction nilpotent.

Fact: Finite gp \(G \) is nilpotent iff \(G = \prod_{i=1}^{n} P_i \) (Part of Sylow Subgps.)

Further Study \(\tau(G) \), \(G/\tau(G) \), put together.

Suppose \(G \) is \(k \)-step nilpotent. Let \(\tau_i(G) = \{ z \in G \mid z^n = 1 \} \)
define \(\tau_{i+1}(G) \) to be the subgroup \(\tau_{i+1}(G) = \tau(G)/\tau_i(G) \).

Correspondence: \(\{ \text{subgps of } G \} \) containing \(\tau(G) \)
\(\leftrightarrow \{ \text{subgps of } G/\tau(G) \} \).

Notes: \(\tau_2(G) = \{ z \in G \mid z^2 \in \text{central "mod centre"} \} \), \(\tau_1(G) = \{ z \in G \mid \forall g \in G : [z, g] \in \tau(G) \} \).

Thus, \(\tau_i(G) \) is abelian by \(\tau_{i+1}(G)/\tau_i(G) = Z(G/\tau_i(G)) \).
Different view of nilpotence: For any G, can define $\delta_0, \delta_1, \delta_2, \ldots$.

G is nilpotent if $\delta_k(G) = G$ for some k.

"lower central series".

Notes: $\delta_i(G)$ normal in G, $\delta_i(G)/\delta_{i+1}(G)$ commutative.

General nonlinear:

Example. Reminder (linear algebra) $T \in \text{End}(V)$ is nilpotent when $T^k = 0$ for some k.

Example:

$U_n = \{ g \in \text{GL}(n, \mathbb{R}) \mid \text{g upper-triangular} \}$ if $g \in U_n, (g-I)$

$U_2 = \{ \binom{1}{0} \}, \ U_3 = \{ \binom{1}{0} \}$

$\mathcal{Z}(U_3) = \{ \binom{0}{0} \} \ U_3/\mathcal{Z}(U_3) = \{ \binom{1}{0} \}$

$\mathbb{F}_2 = \{ 0, 1 \}$

$g = \binom{1}{0}$

$\binom{1}{0} \delta = \binom{1}{0}$

$T(U_3) = \mathcal{Z}(U_3)$

$T(U_4) = \mathcal{Z}(U_4)$

$\mathcal{Z}(U_4) = U_4$

or $g \in U_n$, $\log(g) = \log(I + (g-I)) = \sum_{i=1}^{n} \frac{(-1)^{i+1}}{i} (g-I)^i$.
Def: \(G \) is agp. Call a chain of subgroups
\[\{e\} = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_k = G \]
a normal series if \(G_i \triangleleft G_{i+1} \) for each \(i \).
(don't need \(G_i \triangleleft G \)).

Always have \(\{e\} \triangleleft G \).

Idea: Understand \(G \) from quotients \(G_{i+1}/G_i \).

Def: Say \(G \) is solvable if \(G \) has a normal series with
\(G_i = G_{i+1}/G_i \) abelian for all \(i \).

Example: nilpotent gps. Also \(B_n = \{ g \in GL_n \mid g \text{ upper triangular} \} \).

Say \(G \) is solvable of deg \(d \) if has normal series with \(d \) terms
& abelian quotients.

Thm (Galois): Let \(f \in \mathbb{Q}[x] \) be a polynomial, let \(\Sigma \subset \mathbb{C} \) be
the field generated by roots of \(f \). ("splitting field of \(f \")
\[\text{let } \text{Gal}(f) = \text{Aut}(\Sigma) = \{ \phi : \Sigma \to \Sigma | \phi \text{ bijective} \} \]
\[\phi(x+y) = \phi(x) + \phi(y) \]
\[\phi(xy) = \phi(x) \phi(y) \]

Then, (i) \# Gal(f) finite.
(ii) Roots of \(f \) can be expressed using radicals.

(\(\text{iff } \text{Gal}(f) \) is solvable.

Example: \(f(x) = ax^2 + bx + c \), roots \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
(if \(\sqrt{b^2 - 4ac} \in \mathbb{Q} \), \(\text{Gal}(f) = \mathbb{Z}/2 \))
(if \(\sqrt{b^2 - 4ac} \notin \mathbb{Q} \), \(\text{Gal}(f) = C_2 \))

\(\text{bely } \text{Gal}(f) \) commutative \(\Rightarrow f \) is solvable by radicals.