Math 342 Problem set 10 (due 22/11/011)

Working with polynomials

1. For each pair of polynomials \(f, g \) below, find \(q, r \in \mathbb{Q}[x] \) such that \(g = qf + r \) and \(\deg r < \deg f \).
 (a) \(g = 2x + 4, f = 2 \).
 (b) \(g = 2x + 4, f = x + 1 \).
 (c) \(g = 2x + 4, f = x^2 - 2 \).
 (d) \(g = x^6 + 5x^4 + 3x^3 + x + 1, f = x^2 + 2 \).

2. Same as problem 1, but reduce all coefficients modulo 5. Thus think of \(f, g \) as elements of \(\mathbb{F}_5[x] \) and find \(q, r \) in \(\mathbb{F}_5[x] \).

3. Simplify the products \((x + 1) \cdot (x + 1) \in \mathbb{F}_2[x], (x + 1)(x + 1)(x + 1) \in \mathbb{F}_3[x] \). Explain why \(x^2 + 1 \) is not irreducible in \(\mathbb{F}_2[x] \) (even though it is irreducible in \(\mathbb{Z}[x] \)!)\n
4. The following transmissions were made using CRC-4. Decide whether the received message should be accepted. Write an identity of polynomials justifying your conclusion.
 (a) \(\langle 00000000, 0000 \rangle \).
 (b) \(\langle 00000100, 0000 \rangle \).
 (c) \(\langle 00101100, 0000 \rangle \).
 (d) \(\langle 10110111, 1011 \rangle \).

5. Over the field \(\mathbb{F}_5 \) we would like to encode the following three-digit messages by Reed-Solomon coding, evaluating at the 4 non-zero points \(\{1, 2, 3, 4\} \) modulu 5. For each message write the associated polynomial and encoded 4-digit transmission.
 (a) \(m = (1, 2, 3) \) \(\) mod 5 (here \(m(x) = 1 + 2x + 3x^2 \) mod 5).
 (b) \(m = (0, 0, 0) \) \(\) mod 5.
 (c) \(m = (1, 4, 2) \) \(\) mod 5.
 (d) \(m = (2, 0, 2) \) \(\) mod 5.

6. Working over the field \(\mathbb{F}_5 \), the sender has encoded two-digit messages by evaluating the associated linear polynomial at the 4 non-zero points in the same order as above. You receive the transmissions below, which may contained corrupted bits. For each 4-tuple find the linear polynomial which passes through as many points as possible.
 (a) \(\vec{v}' = (1, 2, 3, 3) \).
 (b) \(\vec{v}' = (4, 1, 3, 0) \).
 (c) \(\vec{v}' = (2, 4, 3, 1) \).

The general linear group

7. Let \(F \) be a field. Define \(\text{GL}_n(F) = \{ g \in M_n(F) \mid \det(g) \neq 0 \} \). Using the formulas \(\det(gh) = \det(g)\det(h) \), \(\det(I_n) = 1 \) and the fact that if \(\det(g) \neq 0 \) then \(g \) is invertible, show that \(\text{GL}_n(F) \) contains the identity matrix and is closed under multiplication and under taking of inverses.

(continued on the reverse)
8. Consider the vector space $V = \mathbb{F}_p^2$ over \mathbb{F}_p.
 (a) How many elements are there in V? In a 1-dimensional subspace of V?
 (b) How many elements in V are non-zero? If W is a given 1-dimensional subspace, how many elements are there in the complement $V \setminus W$?
 (c) Let $w \in V$ be a non-zero column vector. How many $v \in V$ exist so that the 2×2 matrix $(w \ v)$ is invertible?
 (d) By multiplying the number of choices for w by the number of choices for v, show that $GL_2(\mathbb{F}_p)$ has $(p + 1)p(p - 1)^2$ elements.

Supplementary Problems

A. (The field of rational functions) Let F be a field.
 (a) Let Q be the set of all formal expressions $\frac{f}{g}$ with $f, g \in F[x], g \neq 0$. Define a relation \sim on Q by $\frac{f}{g} \sim \frac{f'}{g'}$ iff $fg' = gf'$. Show that \sim is an equivalence relation.
 (b) Let $F(x)$ denote the set Q/\sim of equivalence classes in Q under \sim. Show that $F(x)$ has the structure of a field.
 \[\text{Hint: Define operations by choice of representatives.} \]
 (c) Show that the map $F[x] \to F(x)$ mapping $f \in F[x]$ to the equivalence class of $\frac{f}{1}$ is an injective ring homomorphism. Obtain in particular a ring homomorphism $\psi : F \to F(x)$.

B. (Universal properties of $F[x], F(x)$) Let E be another field, and let $\varphi : F \to E$ be a homomorphism of rings.
 (a) Show that φ is injective.
 \[\text{Hint: Assume } x \neq 0 \text{ but } \varphi(x) = 0 \text{ and show that } \varphi(1) = 0. \]
 (b) Now let $\alpha \in E$. Show that there exists a ring homomorphism $\bar{\varphi} : F[x] \to E$ such that (i) $\bar{\varphi} \circ \iota = \varphi$ and (ii) $\bar{\varphi}(x) = \alpha$.
 (c) Show that there is at most one $\bar{\varphi}$ satisfying (i),(ii).
 \[\text{Hint: By induction on the degree of the polynomial.} \]
 (d) Assume that α is transcendental over F, that is, that it is not a zero of any polynomial in $F[x]$. Show that $\bar{\varphi}$ extends uniquely to a field homomorphism $\bar{\varphi} : F(x) \to E$.

C. (Degree valuation) For non-zero $f \in F[x]$ set $v_\infty(f) = -\deg f$. Also set $v_\infty(0) = \infty$.
 (a) For $\frac{f}{g} \in Q$ set $v_\infty \left(\frac{f}{g} \right) = v_\infty(f) - v_\infty(g)$. Show that v_∞ is constant on equivalence classes, thus descends to a map $v_\infty : F(x) \to \mathbb{Z} \cup \{ \infty \}$.
 (b) For $r, s \in F(x)$ show that $v_\infty(rs) = v_\infty(r) + v_\infty(s)$ and $v_\infty(r + s) \geq \min \{ v_\infty(r), v_\infty(s) \}$ with equality if the two valuations are different (cf. Problem A, Problem Set 4).
 (c) Fix $q > 1$ and set $|r|_\infty = q^{-v_\infty(r)}$ for any $r \in F(x) \ (0|_\infty = 0)$. Show that $|rs|_\infty = |r|_\infty |s|_\infty$, $|r + s|_\infty \leq |r|_\infty + |s|_\infty$.

Remark. When F is a finite field, it is natural to take q equal to the size of F. Then $\mathbb{F}_p(x)$ with the absolute value $|\cdot|_p$ behaves a lot like \mathbb{Q} with the p-adic absolute value $|\cdot|_p$.

D. ($F[x]$ is a Principle Ideal Domain) Let $I \subset F[x]$ be an ideal. Show that there exists $f \in F[x]$ such that $I = (f)$, that is $I = \{ f \cdot g \mid g \in F[x] \}$. 63