Math 121 – Summary of improper integrals
Lior Silberman, UBC
February 2, 2012

1 Definitions

- For \(f \) defined for \(x \geq a \) so that \(\int_a^T f(x) \, dx \) makes sense for all \(x \) we set (IF THE LIMIT EXISTS)
 \[
 \int_a^\infty f(x) \, dx = \lim_{T \to \infty} \int_a^T f(x) \, dx
 \]
 - Say the integral “converges” if the limit exists, “diverges” if it doesn’t.
 - The notation on the LHS is shorthand for the value of the limit.
 - \(\int_a^\infty f(x) \, dx \) converges iff \(\int_a^b f(x) \, dx \) converges and in that case \(\int_a^\infty f(x) \, dx = \int_a^b f(x) \, dx + \int_b^\infty f(x) \, dx \) (“area is additive”).
 - Intuition: All that matters is the asymptotic behaviour near infinity.

- For \(f \) defined for \(a < x \leq b \) we set
 \[
 \int_a^b f(x) \, dx = \lim_{T \to \infty} \int_a^T f(x) \, dx = \lim_{\epsilon \to 0} \int_{a+\epsilon}^b f(x) \, dx.
 \]
 - Again same terminology for “convergence”, “divergence”.
 - Again if \(f \) bounded near \(b \) then value of \(b \) not important – only behaviour near \(a \) is.

- If \(\int_a^b f(x) \, dx \) has several “bad points”, break up into sub-intervals on with one bad endpoint each.
 \[
 \int_0^\infty \frac{e^x}{\sqrt{x^2-2}} \, dx = \int_0^1 \frac{e^x}{\sqrt{x^2-2}} \, dx + \int_1^2 \frac{e^x}{\sqrt{x^2-2}} \, dx + \int_2^3 \frac{e^x}{\sqrt{x^2-2}} \, dx + \int_3^\infty \frac{e^x}{\sqrt{x^2-2}} \, dx.
 \]
- Limit laws apply, so if the integrals involving \(f, g \) on some interval converge so does the integral involving \(\alpha f + \beta g \).

2 \(f \) positive

- Then \(\int_a^T f(x) \, dx \) is increasing when the interval increases. As \(T \to \infty \) it is either bounded (and the limit exists) or unbounded (and the limit is \(\infty \)).
 - Key examples:
 \[
 \int_1^\infty \frac{dx}{\sqrt{x}} = \lim_{T \to \infty} \int_1^T \frac{dx}{\sqrt{x}} = \lim_{T \to \infty} \left[2\sqrt{x} \right]_1^T = \lim_{T \to \infty} \left(2\sqrt{T} - 2 \right) = \infty
 \]
 \[
 \int_1^\infty \frac{dx}{x^2} = \lim_{T \to \infty} \int_1^T \frac{dx}{x^2} = \lim_{T \to \infty} \left[-\frac{1}{x} \right]_1^T = \lim_{T \to \infty} \left(1 - \frac{1}{T} \right) = 1.
 \]
3 Absolute convergence

- In general
 \[\int_1^\infty \frac{dx}{x^p} = \lim_{T \to \infty} \left[\frac{T^{1-p}}{1-p} - \frac{1}{1-p} \right] = \begin{cases} \frac{1}{p-1} & p > 1 \\ \infty & p \leq 1 \end{cases} \]

- At a finite interval
 \[\int_0^1 \frac{dx}{x^p} = \lim_{T \to 0} \left[\frac{1}{1-p} - \frac{T^{1-p}}{1-p} \right] = \begin{cases} \frac{1}{p-1} & p < 1 \\ \infty & p \geq 1 \end{cases} \]

- Comparison
 - For \(f \) positive, all that matters is the upper bound, so: if \(0 \leq f(x) \leq g(x) \) for all \(x \) then
 - If an improper integral for \(g \) on some interval converges the same holds for \(f \) (smaller area is also finite).
 - If an improper integral for \(f \) on some interval diverges the same holds for \(g \) (larger area is also infinite).
 - Key situation: suppose for \(x \) large \(f, g \) are positive and there are constants \(0 < A < B \) so that \(A \leq \frac{f(x)}{g(x)} \leq B \) for \(x \) large. Then \(\int_a^\infty f(x) \, dx \) and \(\int_a^\infty g(x) \, dx \) either both converge or both diverge.
 - Examples for deciding convergence:
 1. \(\frac{1}{\sqrt{x^3 - 5}} \sim \infty x^{-3/2} \) (asymptotics as \(x \to \infty \)); since \(\int_{10}^\infty \frac{dx}{\sqrt{x^3-5}} \) converges so does \(\int_{10}^\infty \frac{dx}{\sqrt{x^3}} \).
 2. Decide if \(\int_0^1 \frac{\sqrt{x}}{x} \, dx \) converges. Only bad point is at \(x = 0 \); there we have \(\frac{\sqrt{x}}{x} \sim 0 \frac{1}{\sqrt{x}} \). Since \(\int_0^1 \frac{dx}{\sqrt{x}} \) converges so does \(\int_0^1 \frac{dx}{\sqrt{x^3}} \).
 3. \(\int_{1/2}^1 \frac{dx}{\sin(\pi x)} \). The integrand blows up as \(x \to 1 \). In what way?
 - Method 1: change variables to \(y = 1-x \), so we are looking at \(\int_{1/2}^0 -\frac{dy}{\sin(\pi y)} = \int_0^{1/2} \frac{dy}{\sin(\pi y)} \). Now \(\sin(\pi y) \sim_0 \pi y \) so \(\frac{1}{\sin(\pi y)} \sim_0 \frac{1}{\pi y} \) and the integral diverges.
 - Method 2: (same idea, different presentation) write \(\sin(\pi x) = -\sin(\pi x - \pi) = -\sin(\pi(1-x)) \).
 As \(x \to 1 \), \(1-x \) is small so \(\sin(\pi(1-x)) \sim_1 \pi(1-x) \). It follows that
 \[\frac{1}{\sin(\pi x)} \sim \frac{1}{x-1} = \frac{1}{1-x} \]

 Now \(\int_{1/2}^1 \frac{dx}{\sin(\pi x)} \) diverges since the integrand blows at rate \(\frac{1}{\text{distance to bad point}} \).

3 Absolute convergence

- Suppose \(\int_a^\infty |f(x)| \, dx \) converges. Then \(g(x) = f(x) + |f(x)| \) satisfies \(0 \leq g(x) \leq 2|f(x)| \) so \(\int_a^\infty (f(x) + |f(x)|) \, dx \) converges. Also, \(\int_a^\infty (-|f(x)|) \, dx \) converges. Adding we see that \(\int_a^\infty f(x) \, dx \) converges.
 - If \(\int_a^\infty |f(x)| \, dx \) converges we say \(\int_a^\infty f(x) \, dx \) converges absolutely.
 - If \(\int_a^\infty f(x) \, dx \) converges but \(\int_a^\infty |f(x)| \, dx = \infty \) we say \(\int_a^\infty f(x) \, dx \) converges conditionally.

- Key examples:
 - \(\int_0^\infty \frac{\cos x}{x^2} \, dx \) converges absolutely since \(\left| \frac{\cos x}{x^2} \right| \leq \frac{1}{x^2} \).
 - \(\int_0^\infty \frac{\cos x}{x} \, dx \) converges conditionally.