1. Universal properties.

(i) Recall the definition of a product in an arbitrary category, and check that the product of spaces is an example of a product in \(\text{Top} \). Show that the universal property uniquely determines the product topology.

(ii) Starting with the definition of the quotient topology via universal properties, give a definition for the quotient topology in terms of open sets.

2. Fix spaces \(X \) and \(Y \).

(i) Show that \(f \simeq g \) is an equivalence relation, for maps \(f, g \colon X \to Y \) admitting a homotopy between them.

(ii) If \(f_0 \) is homotopic to \(f_1 \) and \(g_0 \) is homotopic to \(g_1 \), where the range of \(f \) agrees with the domain of \(g \), show that \(f_0 \circ g_0 \) is homotopic to \(f_1 \circ g_1 \).

(iii) Prove that concatenation of paths \(I \to X \) forms a well-defined product on homotopy classes of paths.

3. Let \(\gamma, \varphi, \psi \) be loops based at a point \(x_0 \) in a space \(X \). Find an explicit homotopy \(H \colon I \times I \to X \) with the properties that \(H(s, 0) = (\gamma * \varphi * \psi)(s) \), \(H(s, 1) = (\gamma * (\varphi * \psi))(s) \) and \(H(s, \frac{1}{2}) = (\gamma * \varphi * \psi)(s) \). Here

\[
(\gamma * \varphi * \psi)(s) = \begin{cases}
\gamma(3s) & s \in [0, \frac{1}{3}] \\
\varphi(3s) & s \in \left(\frac{1}{3}, \frac{2}{3}\right) \\
\psi(3s) & s \in \left(\frac{2}{3}, 1\right]
\end{cases}
\]

as introduced in class.

4. Consider loops \(\gamma \) and \(\varphi \) so that \([\gamma]\) and \([\varphi]\) are elements of the group \(\pi_1(X, x_0) \). Prove that \([\gamma][\varphi] = [\text{id}] \) if and only if \(\varphi \simeq \bar{\gamma} \), where \(\bar{\gamma}(s) = \gamma(1 - s) \).

5. The groups \(\pi_1(X, x_0) \) and \(\pi_1(X, x_1) \) are isomorphic for any \(x_0 \neq x_1 \) in a path connected space \(X \). Prove this.