Math 309: Introduction to knot theory
Additional questions for review, collected from the final lectures
(not for submission)

1. Show that every braid diagram \(\beta \) admits and inverse braid diagram \(\beta^{-1} \) so that, after isotopy, \(\beta \cdot \beta^{-1} \) and \(\beta^{-1} \cdot \beta \) (each obtained by concatenation) are equivalent to the trivial braid.

2. Show, via an explicit example, that multiplication in the braid group (on 3 or more strands) is not commutative. For 2-strand braids, multiplication is commutative. Can you explain why?

3. Find the Artin combed form for the braid \((\sigma_2 \sigma_1^{-1})^3 \).

4. Find all 14 so-called crossingless matchings of 8 points in the boundary of disk (you can think of these as two sets of 4 points on opposite sides of a square). Recall from class that these matchings are a basis for \(TL_4 \).

5. Given a braid \(\beta \in B_n \), write down a formula for the Jones polynomial \(V_\beta(t) \) in terms of the value \(B(\beta) \in TL_n \). (Hint: try the case \(n = 3 \) first)

6. In the case of \(\beta \in B_3 \), determine the effect of an M2 move on \(B(\beta) \), that is, calculate \(B(\sigma_4^\pm 1 \beta) \).