§4.6, p.268, \#21

This involves a sophisticated use of implicit differentiation.
Without a graphing calculator the graph of $\sin y=x y$ will be hard to draw. But let us imagine that a graph was there, and that we want to find the slope and the concavity of that graph at a certain point, for example at $(0, \pi)$. By implicit differentiation, regarding y as an implicit function of x :

$$
\begin{equation*}
(\cos y) y^{\prime}=y+x y^{\prime} \tag{2}
\end{equation*}
$$

or $\quad(\cos y-x) y^{\prime}=y$
Hence $\quad y^{\prime}=y /(\cos y-x)$
In particular, $\mathrm{y}^{\prime}(0)=\pi / \cos \pi-0=-\pi$ is the slope of the tangent line at $(0, \pi)$. The tangent line itself therefore has equation $\mathrm{y}-\pi=-\pi(\mathrm{x}-0)$, or $\mathrm{y}=\pi-\pi \mathrm{x}$. Differentiating (3) once more with respect to x gives

$$
\begin{equation*}
y^{\prime \prime}=\frac{(\cos y-x) y^{\prime}-y\left(-(\sin y) y^{\prime}-1\right)}{(\cos y-x)^{2}} \tag{4}
\end{equation*}
$$

using (2), (3) to simplify (4) one finally gets

$$
\mathrm{y}^{\prime \prime}=\frac{2 y(\cos y-x)+y^{2} \sin y}{(\cos y-x)^{3}}
$$

At $\mathrm{x}=0, \mathrm{y}=\pi$, one has

$$
\mathrm{y}^{\prime \prime}(0)=\frac{2 \pi(\cos \pi-0)+\pi^{2} \sin \pi}{(\cos \pi-0)^{3}}=2 \pi
$$

Since $2 \pi>0$ the graph of $\sin y=x y$ at $(0, \pi)$ is concave up. In the vicinity of $(0, \pi)$ the graph should be drawn above the line $\mathrm{y}=\pi-\pi x$.
§ 4.6, p.268, \#85 Given $\mathrm{z}=\mathrm{g}(\mathrm{y}), \mathrm{y}=\mathrm{f}(\mathrm{x}) . \operatorname{So} \mathrm{z}=\mathrm{g}(\mathrm{f}(\mathrm{x}))$, and by the chain
rule $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$. Applying D_{x} to both sides, we get

$$
\begin{align*}
& \frac{d^{2} z}{d x^{2}} \tag{1}\\
& \text { Now }
\end{align*}=\sqrt{\frac{d}{d x}\left(\frac{d z}{d y}\right)} \cdot \frac{d y}{d x}+\frac{d z}{d y} \cdot \frac{d^{2} y}{d x^{2}}
$$

$\frac{d}{d x}\left(\frac{d z}{d y}\right)$

$$
=\frac{d}{d y}\left(\frac{d z}{d y}\right) \cdot \frac{d y}{d x}=\frac{d^{2} z}{d y^{2}} \cdot \frac{d y}{d x} \text {. Substituting this into }
$$

the box in (1) will give the final answer.

By standard formula
$\cos \mathrm{x}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \cdots$
substituting x by 2 x gives
$\cos 2 \mathrm{x}=1-\frac{4 x^{2}}{2!}+\frac{16 x^{4}}{4!}-\frac{64 x^{6}}{6!}+\cdots \cdots$
If we multiply (1) by $-\frac{1}{2}$ and then add $\frac{1}{2}$ to the result,
we get $\frac{1}{2}-\frac{1}{2} \cos 2 \mathrm{x}=0-\frac{2 x^{2}}{2!}+\frac{8 x^{4}}{4!}-\frac{32 x^{6}}{6!}+\cdots \cdots$

The left hand side equals $f(x)=\sin ^{2} x$, so (2) is the Maclaurin series for $\sin ^{2} x$.
§ 10.4, p.715, \#29
Let $\mathrm{f}(\mathrm{x})=\ln (1+\mathrm{x})$. Repeated differentiation gives
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{1+x}, \mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-1}{\left(1+x^{2}\right)}, \mathrm{f}^{\prime \prime \prime}(\mathrm{x})=\frac{2!}{(1+x)^{3}}, \mathrm{f}^{(\mathrm{iv})}(\mathrm{x})=\frac{-3!}{(1+x)^{4}}$.
\ldots and in general $\mathrm{f}^{(\mathrm{n})}(\mathrm{x})=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$
It follows that $\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1, \mathrm{f}^{\prime \prime}(0)=-1, \mathrm{f}^{\prime \prime \prime}(0)=2!$,
$\cdots \cdot \mathrm{f}^{(\mathrm{n})}\left(00=(-1)^{\mathrm{n}-1}(\mathrm{n}-1)!\right.$
The Taylor formula for x near $\mathrm{a}=0$ is

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}(0)+\mathrm{f}^{\prime}(0) \mathrm{x}+\frac{\mathrm{f}^{\prime \prime}(0)}{2!} \mathrm{x}^{2}+\cdots+\frac{f^{(n)}(0)}{n!} \mathrm{x}^{\mathrm{n}}+\cdots \cdot
$$

So $\ln (1+x)=0+x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \pm \cdots+\frac{f^{(n)}(0)!}{n!} x^{n} \pm \cdots$
Note that the coefficient of x^{n} simplifies to $\frac{(-1)^{n-1}}{n}$ [Answer]
§ 10.4, Extra question 1
To get the Maclaurin series for $x^{3} \ln (1+x)$, just multiply x^{3} to the answer of p.175, \# 29 .

