This involves a sophisticated use of implicit differentiation. §4.6, p.268, #21

Without a graphing calculator the graph of $\sin y = xy$ will be hard to draw. But let us imagine that a graph was there, and that we want to find the slope and the concavity of that graph at a certain point, for example at $(0, \pi)$. By implicit differentiation, regarding y as an implicit function of x :

 $(\cos y) y' = y + x y'$ (1) $(\cos y - x) y' = y$ (2) or Hence $y' = y / (\cos y - x)$ (3) In particular, $y'(0) = \pi/\cos \pi \cdot 0 = -\pi$ is the slope of the tangent line at $(0, \pi)$. The tangent line itself therefore has equation $y - \pi = -\pi (x - 0)$, or $y = \pi - \pi x$. Differentiating (3) once more with respect to x gives

$$y'' = \frac{(\cos y - x)y' - y(-(\sin y)y' - 1)}{(\cos y - x)^2}$$
(4)

using (2), (3) to simplify (4) one finally gets

$$y'' = \frac{2y(\cos y - x) + y^2 \sin y}{(\cos y - x)^3}$$

At x = 0, $y = \pi$, one has

$$y''(0) = \frac{2\pi(\cos \pi - 0) + \pi^2 \sin \pi}{(\cos \pi - 0)^3} = 2\pi$$

Since $2\pi > 0$ the graph of sin y = xy at $(0, \pi)$ is concave up. In the vicinity of $(0, \pi)$ the graph should be drawn above the line $y = \pi - \pi x$.

§ 4.6, p.268, #85 Given
$$z = g(y)$$
, $y = f(x)$. So $z = g(f(x))$, and by the chain rule $\frac{dz}{dz} = \frac{dz}{dx} \frac{dy}{dx}$. Applying D_x to both sides, we get

 D_x to both sides, we ge dy dxdx

$$\frac{d^{2}z}{dx^{2}} = \frac{d}{dx}\left(\frac{dz}{dy}\right) \cdot \frac{dy}{dx} + \frac{dz}{dy} \cdot \frac{d^{2}y}{dx^{2}}$$
(1)
Now

$$\frac{d}{dx}\left(\frac{dz}{dy}\right) = \frac{d}{dy}\left(\frac{dz}{dy}\right) \cdot \frac{dy}{dx} = \frac{d^2z}{dy^2} \cdot \frac{dy}{dx}$$
 Substituting this into the box in (1) will give the final answer.

the box in (1) will give the final answer.

§ 10.4, p.715, #28

By standard formula

 $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$ substituting x by 2x gives $\cos 2x = 1 - \frac{4x^{2}}{2!} + \frac{16x^{4}}{4!} - \frac{64x^{6}}{6!} + \cdots$ (1) If we multiply (1) by $-\frac{1}{2}$ and then add $\frac{1}{2}$ to the result, we get $\frac{1}{2} - \frac{1}{2}\cos 2x = 0 - \frac{2x^{2}}{2!} + \frac{8x^{4}}{4!} - \frac{32x^{6}}{6!} + \cdots$ (2)

The left hand side equals $f(x) = \sin^2 x$, so (2) is the Maclaurin series for $\sin^2 x$.

§10.4, p.715, #29

Let f(x) = ln(1+x). Repeated differentiation gives $f'(x) = \frac{1}{1+x}$, $f''(x) = \frac{-1}{(1+x^2)}$, $f'''(x) = \frac{2!}{(1+x)^3}$, $f^{(iv)}(x) = \frac{-3!}{(1+x)^4}$ and in general $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$ It follows that f(0) = 0, f'(0) = 1, f''(0) = -1, f'''(0) = 2!, $f^{(n)}(00 = (-1)^{n-1}(n-1)!$

The Taylor formula for x near a = 0 is

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + \dots$$

So $\ln(1+x) = 0 + x - \frac{x^{2}}{2} + \frac{x^{3}}{3} \pm \dots + \frac{f^{(n)}(0)!}{n!}x^{n} \pm \dots$
Note that the coefficient of x^{n} simplifies to $\frac{(-1)^{n-1}}{n}$ [Answer]

§ 10.4, Extra question 1 To get the Maclaurin series for $x^3 \ln(1 + x)$, just multiply x^3 to the answer of p.175, #29.