1. Let \(n \in \mathbb{Z} \). Prove or disprove: \(n \) is odd if and only if \(4n^3 - 2n + 1 \) is odd.

Solution: The statement is false, because the implication ‘\(4n^3 - 2n + 1 \) is odd implies \(n \) is odd’ is false. Here is a counterexample: when \(n = 2 \), \(4n^3 - 2n + 1 = 29 \).

Definition 0.1 (Divisibility). Let \(a, b \in \mathbb{Z} \). \(a \) divides \(b \) (written \(a \mid b \)) if there is some \(n \in \mathbb{Z} \) such that \(b = an \). Here are some properties you can assume. They are a good warmup if you want practice with proofs.

- \(a \mid b \land b \mid c \implies a \mid c \)
- \(a \mid b \land a \mid c \implies a \mid (bx + cy) \)
- \(\forall a \in \mathbb{Z}, a \mid 0 \)
- \(\forall a \in \mathbb{Z}, 1 \mid a \)

2. Prove or find a counterexample: For all \(a, b \in \mathbb{Z} \), if \(3 \mid ab \), then \((3 \mid a \text{ or } 3 \mid b) \).

Proof. We prove the contrapositive, namely

\[
\sim ((3 \mid a) \lor (3 \mid b)) \implies \sim (3 \mid ab)
\]

This is equivalent to prove that if \(3 \nmid a \) and \(3 \nmid b \), then \(3 \nmid ab \). If \(3 \nmid a \), then either \(a \equiv 1 \pmod{3} \) or \(a \equiv 2 \pmod{3} \). Similarly for \(b \). So we divide it up into four cases.

Case 1: \(a \equiv 1 \pmod{3}, b \equiv 1 \pmod{3} \). Then \(a = 3x + 1 \) and \(b = 3y + 1 \) for some \(x, y \in \mathbb{Z} \). Then

\[
ab = (3x + 1)(3y + 1) = 9xy + 3x + 3y + 1 = 3(3xy + x + y) + 1
\]

Thus, \(ab \equiv 1 \pmod{3} \) and so \(3 \nmid ab \).

Case 2: \(a \equiv 1 \pmod{3}, b \equiv 2 \pmod{3} \). Then \(a = 3x + 1 \) and \(b = 3y + 2 \) for some \(x, y \in \mathbb{Z} \). Then

\[
ab = (3x + 1)(3y + 2) = 9xy + 6x + 3y + 2 = 3(3xy + 2x + y) + 2
\]

Thus, \(ab \equiv 2 \pmod{3} \) and so \(3 \nmid ab \).

Case 3: \(a \equiv 2 \pmod{3}, b \equiv 1 \pmod{3} \). This is similar to the last case.

Case 4: \(a \equiv 2 \pmod{3}, b \equiv 2 \pmod{3} \). Then \(a = 3x + 2 \) and \(b = 3y + 2 \) for some \(x, y \in \mathbb{Z} \). Then

\[
ab = (3x + 2)(3y + 2) = 9xy + 6x + 6y + 4 = 3(3xy + 2x + 2y + 1) + 1
\]

Thus, \(ab \equiv 1 \pmod{3} \) and so \(3 \nmid ab \). \(\square\)

\(^1\text{In fact, } 4n^3 - 2n + 1 \text{ is always odd when } n \text{ is an integer.} \)
3. Prove or find a counterexample: For all $a, b \in \mathbb{Z}$, if $4|ab$, then $(4|a \text{ or } 4|b)$.

Solution: There is a counterexample, namely $a = 2$ and $b = 2$. Then $4|ab$, but $4 \not| a$ and $4 \not| b$.

Definition 0.2 (Congruence). Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. a is congruent to b modulo n if n divides $a - b$. We write this as

$$a \equiv b \pmod{n}$$

Here are some properties you can assume.

- $a \equiv b \pmod{n} \implies a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$
- $\exists r \in \{0, 1, 2, \ldots, n - 1\}, a \equiv r \pmod{n}$

4. Prove or disprove: For all $n \in \mathbb{Z}$, $3|n$ or $n^2 \equiv 1 \pmod{3}$.

Proof. We consider three possible cases: $n \equiv 0, 1, \text{ or } 2 \pmod{3}$.

Case 1: $n \equiv 0 \pmod{3}$. Then $3|n$.
Case 2: $n \equiv 1 \pmod{3}$. Then $n^2 \equiv 1 \pmod{3}$.
Case 3: $n \equiv 2 \pmod{3}$. Then $n^2 \equiv 4 \equiv 1 \pmod{3}$.

5. Prove or disprove: For all $n \in \mathbb{Z}$,

$$(2 \not| n) \land (3 \not| n) \implies \exists m \in \mathbb{Z}, mn \equiv 1 \pmod{6}$$

Proof. We consider six possible cases: $n \equiv 0, 1, 2, 3, 4, \text{ or } 5 \pmod{6}$.

Case 1: $n \equiv 0 \pmod{6}$. Then $2|n$ and so the implication is vacuously true.
Case 2: $n \equiv 1 \pmod{6}$. Then let $m = 1$. We then have

$$mn = n \equiv 1 \pmod{6}$$

Case 3: $n \equiv 2 \pmod{6}$. Then $2|n$ and so the implication is vacuously true.
Case 4: $n \equiv 3 \pmod{6}$. Then $3|n$ and so the implication is vacuously true.
Case 5: $n \equiv 4 \pmod{6}$. Then $2|n$ and so the implication is vacuously true.
Case 6: $n \equiv 5 \pmod{6}$. Then let $m = -1$. We then have

$$mn = -n \equiv -5 \equiv 1 \pmod{6}$$

6. Prove or disprove: For all $n \in \mathbb{Z}$,

$$n^3 \not\equiv 1 \pmod{7} \implies (n^3 \equiv 1 \pmod{7}) \lor (n \equiv 0 \pmod{7})$$

Proof. We consider all seven possibilities for n modulo 7.

Case 1: $n \equiv 0 \pmod{7}$. Then the conclusion is true.
Case 2: $n \equiv 1 \pmod{7}$. Then $n^3 \equiv 1^3 \equiv 1 \pmod{7}$ and the conclusion is true.
Case 3: $n \equiv 2 \pmod{7}$. Then $n^3 \equiv 2^3 \equiv 8 \equiv 7 + 1 \equiv 1 \pmod{7}$ and the conclusion is true.

Case 4: $n \equiv 3 \pmod{7}$. Then $n^3 \equiv 3^3 \equiv 27 \equiv 4 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

Case 5: $n \equiv 4 \pmod{7}$. Then $n^3 \equiv 4^3 \equiv 64 \equiv 9 \cdot 7 + 1 \equiv 1 \pmod{7}$ and the conclusion is true.

Case 6: $n \equiv 5 \pmod{7}$. Then $n^3 \equiv 5^3 \equiv 125 \equiv 18 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

Case 7: $n \equiv 6 \pmod{7}$. Then $n^3 \equiv 6^3 \equiv 216 \equiv 31 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

7. Prove: For all $n \in \mathbb{Z}$,

$$n \equiv 3 \pmod{4} \implies \sim (\exists a, b \in \mathbb{Z}, a^2 + b^2 = n)$$

Proof. We prove the contrapositive, namely we assume that $\exists a, b \in \mathbb{Z}, a^2 + b^2 = n$ and prove that $n \not\equiv 3 \pmod{4}$. We consider four possible cases, based on the parity of a and b.

Case 1: a even, b even. Then $a^2 \equiv 0 \pmod{4}$ and $b^2 \equiv 0 \pmod{4}$. Then $n \equiv 0 + 0 \equiv 0 \pmod{4}$.

Case 2: a even, b odd. Then $a^2 \equiv 0 \pmod{4}$ and $b^2 \equiv 1 \pmod{4}$. Then $n \equiv 0 + 1 \equiv 1 \pmod{4}$.

Case 3: a odd, b even. This is similar to the previous case.

Case 4: a odd, b odd. Then $a^2 \equiv 1 \pmod{4}$ and $b \equiv 1 \pmod{4}$. Then $n \equiv 1 + 1 \equiv 2 \pmod{4}$.

In all four cases, $n \not\equiv 3 \pmod{4}$. Thus, this proves the conclusion.

Definition 0.3 (Relatively prime). Let $a, b \in \mathbb{Z}$. a and b are relatively prime (written $\gcd(a, b) = 1$, or just $(a, b) = 1$) if

$$\forall n \in \mathbb{N} \text{ s.t. } n \geq 2, (n \mid a \implies n \nmid b)$$

8. Prove that 5 and 12 are relatively prime.

Proof. We want to show the statement

$$\forall n \in \mathbb{N} \text{ s.t. } n \geq 2, (n \mid 5 \implies n \nmid 12)$$

Case 1: When $n \not= 5$, the implication is vacuously true, because $n \nmid 5$.

Case 2: When $n = 5$, the implication is true because $n \nmid 12$.

9. Prove that if $a \equiv 7 \pmod{10}$, then a and 10 are relatively prime.

Proof. We will show the statement

$$\forall n \in \mathbb{N} \text{ s.t. } n \geq 2, (n \mid 10 \implies n \nmid a)$$
If $n \neq 2, 5, 10$, then the implication is vacuously true. So assume we are in one of these three cases.

Case 1: $n = 2$. Since $a \equiv 7 \pmod{10}$, $a = 10x + 7$ for some $x \in \mathbb{Z}$. Then $a = 2(5x + 3) + 1$, and so a is odd. Therefore, $2 \nmid a$.

Case 2: $n = 5$. Since $a \equiv 7 \pmod{10}$, $a = 10x + 7$ for some $x \in \mathbb{Z}$. Then $a = 5(2x + 1) + 2$, and so $a \equiv 2 \pmod{5}$. Therefore, $5 \nmid a$.

Case 3: $n = 10$. Since $a \equiv 7 \pmod{10}$, $10 \nmid a$.

In all three cases, $n \nmid a$. This completes the proof. \qed