Problem 9. Are the following functions pdfs?
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Solution 9:

(a) No; f(z) < 0.

{b) Yes.

(c) Yes.

(d) No; [ f(z)dz = 2.

Problem 10. For the functions in Problem 9 that you found to be probability density
functions, find the corresponding cumulative distribution functions.
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Problem 11. Are the following functions cdf's?
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L

Solutton 11:

{(a) No; I7(x) is not a nondecreasing {unction.
(b} Yes.

{¢) No; F(z) is not a nondecreasing function.
{d) No; limy, e F(z) = 7.

Problem 12. For the functions in Problem 11 that you found to be cumulative distri-
bution functions, find the corresponding probability density functions.

Solution 12:

(b) On 0 <z < 7, f(z) = &sin{z).

Problem 13. Show that ee™ " onz € Ris a pdf.

Solution 13: ¢~ > 0forallz € R; [7) e %™ "do = — f; ey = 1.

Problem 14. What is the ¢df of the density function ;(—]—}—p—}?

Solution 14: [° -l di = L arctan{z) -+ .
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Problem 15. Show that p(z) = Ty on & € R is a pdf.
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Solution 15: p(x} > 0 for all z € R; f Wd = - ;Jﬁ%" = 1.
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Problem 16. Show that f(z) { 0 g g Bacd

Solution 16: lim,., .o [{z) = 0; My [{z) = 1. f{z} = ¢ ™ on & = 0 which is
nonnegative; thus, f(x) is nondecreasing.
Problem 17. Find the constant &k that makes the following functions pdf’s.

(a) p(a) = kesin{z), 0 <2 <7

(b)Y plz) = ka*(z - )%, 0<z <1

(¢) pla) = ka{l —2)*, 0<z <1



(d) pla) =k, ~1 <2 <3

(e) plz) = kale ¥, 2 >0.

Solution 17:
(a) k= 3; (b) k =30; (c) & = 20; (d) k = 5 (e) k= g, (use integration by-parts).

Problem 18, For the PDF’s in Problem 17, compute the expectations, variances and
standard deviations of their associated random variables,

Solution 18:
integration exercises



