Section 4.8 Solutions

4.8.11 The antiderivatives of $5 x^{4}$ are $x^{5}+C$. Check: $\frac{d}{d x}\left(x^{5}+C\right)=5 x^{4}$.
4.8.13 The antiderivatives of $\sin 2 x$ are $-(1 / 2) \cos 2 x+C$. Check: $\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x+C\right)=\sin 2 x$.
4.8.15 The antiderivatives of $3 \sec ^{2} x$ are $3 \tan x+C$. Check: $\frac{d}{d x}(3 \tan x+C)=3 \sec ^{2} x$.
4.8.17 The antiderivatives of $-2 / y^{3}=-2 y^{-3}$ are $y^{-2}+C$. Check: $\frac{d}{d y}\left(y^{-2}+C\right)=-2 y^{-3}$.
4.8.19 $\int\left(3 x^{5}-5 x^{9}\right) d x=3 \cdot \frac{x^{6}}{6}-5 \cdot \frac{x^{10}}{10}+C=\frac{1}{2} x^{6}-\frac{1}{2} x^{10}+C$. Check: $\frac{d}{d x}\left(\frac{1}{2} x^{6}-\frac{1}{2} x^{10}+C\right)=3 x^{5}-5 x^{9}$.
4.8.21 $\int\left(4 \sqrt{x}-\frac{4}{\sqrt{x}}\right) d x=\int\left(4 x^{1 / 2}-4 x^{-1 / 2}\right) d x=4 \cdot \frac{x^{3 / 2}}{3 / 2}-4 \cdot \frac{x^{1 / 2}}{1 / 2}+C=\frac{8}{3} x^{3 / 2}-8 x^{1 / 2}+C$. Check: $\frac{d}{d x}\left(\frac{8}{3} x^{3 / 2}-8 x^{1 / 2}+C\right)=4 \sqrt{x}-\frac{4}{\sqrt{x}}$.
4.8.25 $\int\left(3 x^{1 / 3}+4 x^{-1 / 3}+6\right) d x=3 \cdot \frac{3}{4} x^{4 / 3}+4 \cdot \frac{3}{2} x^{2 / 3}+6 x+C=\frac{9}{4} x^{4 / 3}+6 x^{2 / 3}+6 x+C$. Check: $\frac{d}{d x}\left(\frac{9}{4} x^{4 / 3}+6 x^{2 / 3}+6 x+C\right)=3 x^{1 / 3}+4 x^{-1 / 3}+6$.
4.8.27 Using Table 4.5 (formulas 1 and 2), $\int(\sin 2 y+\cos 3 y) d y=-\frac{1}{2} \cos 2 y+\frac{1}{3} \sin 3 y+C$. Check: $\frac{d}{d y}\left(\frac{-1}{2} \cos 2 y+\right.$ $\left.\frac{1}{3} \sin 3 y+C\right)=\sin 2 y+\cos 3 y$.
4.8.29 Using Table 4.5 (formula 3), $\int\left(\sec ^{2} x-1\right) d x=\tan x-x+C$. Check: $\frac{d}{d x}(\tan x-x+C)=\sec ^{2} x-1$.
4.8.39 We have $F(x)=\int\left(x^{5}-2 x^{-2}+1\right) d x=\frac{x^{6}}{6}+2 x^{-1}+x+C$; substituting $F(1)=0$ gives $\frac{1}{6}+2+1+C=0$, so $C=-\frac{19}{6}$, and thus $F(x)=\frac{x^{6}}{6}+\frac{2}{x}+x-\frac{19}{6}$.
4.8.41 We have $F(v)=\int \sec v \tan v d t v=\sec v+C$; substituting $F(0)=2$ gives $\sec 0+C=1+C=2$, so $C=1$, and thus $F(v)=\sec v+1$.

