The University of British Columbia

February 1, 2017

Common Midterm for All Sections of MATH 105 (Version 1)

Closed book examination		1 ime:	ou minutes
Last Name	First		
Signature			
Student Number			
MATH 105 Section Number:	_		

Special Instructions:

No memory aids are allowed. No calculators. No communication devices. Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work. If you need more space than the space provided, use the back of the previous page.

Rules governing examinations

- Each candidate must be prepared to produce, upon request, a UBCcard for identification.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) Having at the place of writing any books, papers or memoranda, calculators, computers, sound or image players/recorders/transmitters (including telephones), or other memory aid devices, other than those authorized by the examiners.
 - (b) Speaking or communicating with other candidates.
- (c) Purposely exposing written papers to the view of other candidates or imaging devices. The plea of accident or forgetfulness shall not be received.
- Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator. (
- Candidates must follow any additional examination rules or directions communicated by the instructor or invigilator.

1		12
2		8
3		8
4		9
5		9
6		4
Total	,	50

- [12] 1. Short-Answer Questions: Put your answer in the box provided but show your work also. Each question is worth 3 marks, but not all questions are of equal difficulty.
- (a) [3] Find an equation of the plane that passes through the point (-3, 2, -1) with a normal vector $\langle -3, 2, -1 \rangle$.

Answer:			

(b) [3] Are the level curves of the function z = 5x + 6y lines, planes or circles?

Answer:		

(c) [3] Let $f(x,y) = e^{\sin(xy)}$. Find $\frac{\partial f}{\partial x}$.

Answer:		

(d) [3] The following table shows values of a function f(x,y) for values of x from 2.3 to 2.5 and values of y from 3.0 to 3.3.

$y \setminus x$	2.3	2.4	2.5
3.0	4.5	4.6	4.7
3.1	4.7	4.8	4.9
3.2	4.8	4.9	5.1
3.3	5.0	5.1	5.2

Use the table above to estimate the value of f_x (2.4, 3.3).

Answer:		

- [8] 2. Let P: 2x + y z = 3 and Q: x + y + z = 1 be two planes.
- (a) Determine if P and Q are orthogonal. You need to justify your answer to get the credits.

(b) Determine if P and Q are parallel. You need to justify your answer to get the credits.

(c) Is there a point in the yz-plane which is contained in both plane P and plane Q? You need to justify your answer to get the credits.

[8] 3. Let
$$z = f(x, y) = \frac{1}{\sqrt{x^2 + 2y^2 - 5}}$$
.

(a) Find the domain of the function z = f(x, y).

(b) Is the graph of the function z=f(x,y) above the plane $z=-\frac{1}{2}$ or below the plane $z=-\frac{1}{2}$? Please give the reason for your answer.

(c) Find $\frac{\partial z}{\partial y}$.

(d) Find the rate of change in $\frac{\partial z}{\partial y}$ at $(\sqrt{7}, 1)$ as we change x but hold y fixed.

- [9] 4. Let $f(x, y) = x^3 + y^3 6xy + A$, where A is a constant.
- (a) Find all critical points of f(x, y).

(b) Determine whether each critical point corresponds to a local maximum, local minimum, or saddle point.

(c) Find the constant A such that -8 is a local minimum value of f(x, y).

- [9] 5. Let R be the set $\{(x,y): x^2 + y^2 \le 10\}$.
- (a) Use Lagrange multipliers to find the maximum and minimum values of 3x + y on the boundary of the set R. A solution that does not use the method of Lagrange multipliers will receive no credit, even if it is correct.

1 Feb 2017	Math 105	Name:	Page 10 of 1	1 nages
T LED ZOT!	Main 100	manne.	 rage 10 or 1	r pages

(b) Find the maximum and minimum value of 3x + y + 9 on the set R.

[4] 6. Determine if there exists a function f(x,y) such that f(x,y) has continuous partial derivatives of all orders, $f_{xy} = 2x^2 + 6y^2$, and $f_{xxx} = 3x^2 + 5y$. If your answer is YES, please find f(x,y). If your answer is NO, please give your reason.

$$|(a) - 3(N+3) + 2(y-2) - (z+1) = 0 \text{ or } 3N-2y+2=-14.$$

(c)
$$\frac{\partial f}{\partial x} = e^{\sin(xy)}\cos(xy) \cdot y$$
.

(d)
$$f_{\chi}(2.4,3.3) \approx \frac{f(2.6,3.3)-f(2.4,3.3)}{2.5-2.4} = \frac{5.2-5.1}{+0.1} = 1.$$

$$f_{\chi}(2.4,3.3) \approx \frac{f(2.3,3.3)-f(2.4,3.3)}{2.3-2.4} = \frac{f.0-5.1}{-0.1} = 1$$

2. We have
$$\vec{n}_p = \langle 2, 1, -1 \rangle$$
 and $\vec{n}_Q = \langle 1, 1, 1 \rangle$.

(2) (i) Sine
$$\sqrt{p} \cdot \sqrt{n} = (2,1,-1) \cdot (1,1,1) = 2+1-1=2 \neq 0$$
, p and Q are not orthogonal.

(4) (iii) Substituting
$$N=0$$
 into the equations of P and Q , we get $\begin{cases} y-z=3 \\ y+z=1 \end{cases}$, which gives $y=2$ and $z=-1$. Here, the point $(0,2,-1)$ in the $y=-1$ just $y=-1$ and $y=-1$

3. (1)(i) the domain is
$$\{(x,y): |x^2+2y^2-5>0\}$$
.

(2] (ii) Above the plane
$$Z = -\frac{1}{2}$$
 because $f(X,Y) > 0$ for all (X,Y) in the domain.

(1) (111)
$$\frac{\partial^2 f}{\partial y} = \frac{\partial}{\partial y} \left((\chi^2 + 2y^2 - f)^{-1/2} \right) = -\frac{1}{2} (\chi^2 + 2y^2 - f)^{-3/2} + \frac{1}{2} (\chi^2 + 2y^2 - f)^{-3/2} = -\frac{1}{2} (\chi^2 + 2y^2 - f)^{-3/2}$$

(4) (iv) We need to find
$$\frac{\partial}{\partial x}(\frac{\partial z}{\partial y})$$
 at $(\sqrt{7}, 1)$.

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x}(-2y(x^2+2y^2-5)^{-3/2})$$

$$= -2y(-\frac{2}{2})(x^2+2y^2-5)^{-5/2}$$

$$= 6xy(x^2+2y^2-5)^{-5/2}$$

4. (1)(i)
$$f_{x}=3\chi^{2}-6y$$
, $f_{y}=3\chi^{2}-6\chi$. We need to Solve $f_{x}=0$ or $f_{x}=0$ (1) $f_{y}=0$ or $f_{x}=0$ (2) By (1), $f_{y}=\frac{1}{2}\chi^{2}$. Using this fact in (2), we get $f_{y}=0$ $f_{y}=\frac{1}{2}\chi^{2}$. Using this fact in (2), we $f_{y}=0$ or $f_{y}=0$ or

[2] (ii) $f_{XX} = 6X$, $f_{YY} = 6Y$, $f_{XY} = -6$. (vitrical points f_{XX} f_{YY} f_{XY} $D = f_{XX}f_{YY} - (f_{XY})^{2}$ (onlusion. (0,0) 0 0 -6 - Saddle point (2,2) (2) 12 -6 + local minimum (1) (iii) By (ii), $f_{(2,2)} = -8 \Rightarrow 2+2-6(2)(2)+A=-8$ $\Rightarrow A = 2$. i.e. A = 0

5. (i) Let f(x,y) = 3x+y, $g(x,y) = x^2+y^2-10$. We for solve the system $f_x = \lambda f_x$ or $f_y = \lambda g_y$ or g = 0 $3=2\lambda\chi$ (17 By (1) and (2), $\frac{3}{1} = \frac{2'\lambda'\lambda}{2\lambda'y} = \frac{1}{y} \Rightarrow \chi = 3y$ (4) Using (4), (3) becomes (37)2+y2-10=0=) y=±1. Then f has possible extreme values at (3,1) and (-3,-1). We compute $f(3,1)=1^{\circ}$ and $f(-3,-1)=-1^{\circ}$, So the maximum value of for $\chi^{2}+\chi^{2}=10$ is f(3,1)=10, and the minimum value is f(-3,-1)=-10. (3) (11) Sime $f_{X}=3$ and $f_{Y}=1$ for f(X,Y)=3X+Y, f(x,y)=3x+y does not have a critical point on the set R. Hence, 10 is the maximum value of f(X, Y) on the set R.

and -lo is the minimum value of f(X, Y) on the set R. It follows that 10+9=19 is the maximum value of 3x+y+9 (on R, and -10+9=- I is the minimum value of 3x+y+9 on R.

6.
$$f_{X}y_{X} = \frac{2}{3X}(2X^{2} + 6y^{2}) = 4X$$
,

 $f_{X}y_{X} = \frac{2}{3X}(4X) = 4$.

 $f_{X}x_{X}y_{Y} = \frac{2}{3y}(3X^{2} + 5y^{2}) = 5$.

Sime $f_{X}y_{X}x_{Y} \neq f_{X}x_{Y}y_{Y}$, there does not exist the function with the properties.