5.23 Prove there is no integer \(a \) such that \(a \equiv 5 \pmod{14} \) and \(a \equiv 3 \pmod{21} \).

5.55 Prove that there do not exist positive integers \(a \) and \(n \) such that \(a^2 + 3 = 3^n \).

3. Carefully read the proof (from the class notes or from the book) that \(\sqrt{2} \) is irrational. Then prove the following.

 (a) Prove that \(\sqrt[3]{5} \) is irrational.

 (b) Prove that \(\log_2(5) \) is irrational. (Remember that \(\log_a(b) \) is the unique real number such that \(a^{\log_a(b)} = b \).)

 (c) (Bonus) Prove that if \(n \) is a positive integer such that \(n \geq 2 \), then \(\sqrt[3]{5}/3 \) is irrational.

4. Prove that between any two real numbers, there are infinitely many rational numbers. (Hint: First prove as a lemma that between any two real numbers, there is at least one rational number.)

5. Consider the following proposition.

Proposition 0.1. Let \(x \) be any positive real number. Then for every positive real number \(y \), there is a positive real number \(z \) such that \(z^x > y \).

 (a) The following is an invalid proof. Explain why it is invalid.

 \[\text{Proof.} \text{ Suppose that the statement is false. Then for some } x, \text{ there is a positive real number } y \text{ such that for every } z > 0, z^x \leq y. \text{ Either } y > 1 \text{ or } y \leq 1: \text{ let us consider these two cases separately.} \]

 \[\begin{itemize}
 \item If } y > 1, \text{ then set } z = y \text{ and } x = 2. \text{ Then } z^x = y^2 > y. \text{ But this contradicts the assumption that } z^x \leq y, \text{ so we have a contradiction!}
 \item If } y \leq 1, \text{ then set } z = 2 \text{ and } x = 1. \text{ Then } z^x = 2 > y. \text{ But this contradicts the assumption that } z^x \leq y, \text{ so we have a contradiction!}
 \end{itemize} \]

 In each case we reach a contradiction, and so our assumption was incorrect. Therefore, for every positive real number \(x \) and every positive real number \(y \), there is a positive real number \(z \) such that \(z^x > y \).

 \(\square \)

 (b) Give a correct proof of the proposition.

6. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function. Suppose that \[\exists a, b \in \mathbb{R}, (a < b \land f(a) < f(b)) \]

and \[\exists c, d \in \mathbb{R}, (c < d \land f(c) > f(d)) \]

Use the Intermediate Value Theorem to prove that \[\exists x, y \in \mathbb{R}, (x < y \land f(x) = f(y)) \]

Hint: Construct a continuous function \(H(t) \) with the property that \(H(0) = f(b) - f(a) \) and \(H(1) = f(d) - f(c) \). Then use the Intermediate Value Theorem on \(H(t) \) over the interval \([0, 1] \).