4.2. Let \(a, b \in \mathbb{Z} \), where \(a \neq 0 \) and \(b \neq 0 \). Prove that if \(a|b \) and \(b|a \) then \(a = b \) or \(a = -b \).

4.10. Let \(n \in \mathbb{Z} \). Prove that \(2|(n^4 - 3) \) if and only if \(4|(n^2 + 3) \).

4.18. Let \(m, n \in \mathbb{N} \) such that \(m \geq 2 \) and \(m|n \). Prove that if \(a \) and \(b \) are integers such that \(a \equiv b \pmod{n} \), then \(a \equiv b \pmod{m} \).

4.22. Let \(n \in \mathbb{Z} \). Prove each of the statements (a) – (f).

(a) If \(n \equiv 0 \pmod{7} \), then \(n^2 \equiv 0 \pmod{7} \).

(b) If \(n \equiv 1 \pmod{7} \), then \(n^2 \equiv 1 \pmod{7} \).

(c) If \(n \equiv 2 \pmod{7} \), then \(n^2 \equiv 4 \pmod{7} \).

(d) If \(n \equiv 3 \pmod{7} \), then \(n^2 \equiv 2 \pmod{7} \).

(e) For each integer \(n \), \(n^2 \equiv (7 - n)^2 \pmod{7} \).

(f) For every integer \(n \), \(n^2 \) is congruent to exactly one of 0, 1, 2 or 4 modulo 7.

4.28. Prove that if \(r \) is a real number such that \(0 < r < 1 \), then \(\frac{1}{r(1-r)} \geq 4 \).

4.32. (a) Recall that \(\sqrt{r} > 0 \) for every positive real number \(r \). Prove that if \(a \) and \(b \) are positive real numbers, then \(0 < \sqrt{ab} \leq (a + b)/2 \). (The number \(\sqrt{ab} \) is called the geometric mean of \(a \) and \(b \), while \((a + b)/2 \) is called the arithmetic mean or average of \(a \) and \(b \).)

(b) Under what conditions does \(\sqrt{ab} = (a + b)/2 \) for positive real numbers \(a \) and \(b \)? Justify your answer.

4.34. Prove for every three real numbers \(x, y \) and \(z \) that \(|x - z| \leq |x - y| + |y - z| \).

4.38. Let \(a, b, x, y \in \mathbb{R} \) and \(r \in \mathbb{R}^+ \). Prove that if \(|x - a| < r/2 \) and \(|y - b| < r/2 \), then \(|(x + y) - (a + b)| < r \).

4.42. Let \(A \) and \(B \) be sets. Prove that \(A \cap B = A \) if and only if \(A \subseteq B \).

4.48. Let \(A = \{n \in \mathbb{Z} : 2|n\} \) and \(B = \{n \in \mathbb{Z} : 4|n\} \). Let \(n \in \mathbb{Z} \). Prove that \(n \in A - B \) if and only if \(n = 2k \) for some odd integer \(k \).

4.56. Let \(A, B \) and \(C \) be sets. Prove that \((A - B) \cup (A - C) = A - (B \cap C) \).

Question. Let \(A, B \) be two sets. Prove: If \(A \cap B = \emptyset \), then \(A = (A \cup B) - B \).

4.58. Let \(A, B \) and \(C \) be sets. Prove that \(A \cap (B \cap C) = (A \cup B) \cap (A \cap C) \).

4.64. For sets \(A \) and \(B \), find a necessary and sufficient condition for \((A \times B) \cap (B \times A) = \emptyset \). Verify that this condition is necessary and sufficient.

4.68. Let \(A, B, C \) and \(D \) be sets. Prove that \((A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D) \).