1. Write down the following
 (a) The completeness axiom
 (b) Definition of max S, sup S of a nonempty subset of \(\mathbb{R} \)
 (c) Definition of \(\lim_{n \to \infty} a_n = L \)
 (d) Definition of a sequence \(\{a_n\} \) is bounded, \(a_n \in \mathbb{R} \).
 (e) Definition of \(\sum_{n=1}^{\infty} a_n \) converges.

2. Consider the telescoping series
 \[\sum_{n=1}^{\infty} \frac{1}{n(n+1)}. \]
 By calculating the partial sums, prove that the series is convergent. Find its limit.

3. Consider the sequence
 \[\left\{ a_n = \frac{\sin(n) + 1}{n^2} ; \ n \in \mathbb{N} \right\}. \]
 Use the \(\epsilon - N \) definition for the limit of a sequence to prove that the sequence \(a_n \) converges to zero as \(n \to \infty \).

4. Use two methods to show \(\sum_{n=1}^{\infty} \frac{n^3}{2^n} \) converges.

Solution:
- Method 1. By the previous question, for \(n \geq 100 \),
 \[\frac{n^3}{2^n} \leq \frac{1}{n^2}. \]
 Note that \(\sum_{n=1}^{\infty} 1/n^2 \) converges, so by comparison test, \(\sum_{n=100}^{\infty} n^5/2^n \) converges and adding finitely many (first 99 terms) does not affects convergence, so \(\sum_{n=1}^{\infty} n^5/2^n \) converges.
- Method 2.
 \[\frac{a_{n+1}}{a_n} = \frac{(n+1)^3}{n^3} \cdot \frac{2^n}{2^{n+1}} = \left(1 + \frac{1}{n} \right)^3 \cdot \frac{1}{2} \to \frac{1}{2} < 1, \text{ as } n \to \infty. \]
 Ratio test then implies the series is convergent.

5. Prove: If \(\lim_{n \to \infty} a_n = 0 \), then for any \(k > 0 \), \(\lim_{n \to \infty} a_n^k = 0 \).

Solution: So suppose that \(k > 0 \) and \(a_n \to 0 \). Choose any \(\epsilon > 0 \). Then there exists an \(N \in \mathbb{R} \) so that \(n > N \) implies that \(|a_n - 0| < \epsilon^{1/k} \). So then \(n > N \) implies that
 \[|a_n^k - 0| = |a_n|^k < \left(\epsilon^{1/k} \right)^k = \epsilon. \]
 This shows that \(a_n^k \to 0 \).
6. Let \(\{a_n\} \) be a sequence of positive numbers. Show: \(\lim_{n \to \infty} a_n = \infty \) iff \(\lim_{n \to \infty} \frac{1}{a_n} = 0 \).

Solution: "\(\implies \)". Given any \(\epsilon > 0 \), let \(M = 1/\epsilon \). Then there is a number \(N \) s.t. \(n > N \) implies that \(a_n > M = 1/\epsilon \). Since each \(a_n \) is positive we have: for \(n > N \)

\[
\left| \frac{1}{a_n} - 0 \right| < \epsilon.
\]

Thus \(\lim 1/a_n = 0 \).

"\(\impliedby \)". So suppose that \(a_n \) is a sequence of positive numbers with \(1/a_n \to 0 \). To show \(a_n \to \infty \), choose any \(M \in \mathbb{R} \). Since \(a_n > 0 \) for each \(n \), then if \(M \leq 0 \) then we automatically have \(a_n > M \) for all \(n \in \mathbb{N} \). So suppose that \(M > 0 \).

Then \(1/a_n \to 0 \) implies that there is a number \(N \) so that \(n > N \) implies that \(1/a_n < 1/M \). Hence, \(n > N \) implies that \(M < a_n \), which shows that \(a_n \to \infty \).

7. Let \(S,T \) be sets. Prove the following

(a) If \(|S| \leq |T| \) then \(|\mathcal{P}(S)| \leq |\mathcal{P}(T)| \).

Solution:

Proof. Assume \(|S| \leq |T| \) and hence there is an injection from \(f : |S| \to |T| \). We must construct an injection from \(\mathcal{P}(S) \to \mathcal{P}(T) \).

Let \(g : \mathcal{P}(S) \to \mathcal{P}(T) \) be defined by

\[
g(A) = f(A) = \{f(a) | a \in A\}
\]

ie - we just apply \(f \) to each element of \(A \).

Now let \(A,B \in \mathcal{P}(S) \) and assume that \(g(A) = g(B) \). We now show \(A = B \).

- Let \(x \in A \). Hence \(f(x) = y \in f(A) = g(A) \). Since \(g(A) = g(B) \) we must have \(y \in g(B) \). Thus there is some \(z \in B \) so that \(y = f(z) \). But then since \(f \) is injective, \(x = z \) and so \(x \in B \). Hence \(A \subseteq B \).

- The reverse inclusion is similar. Let \(z \in B \). Hence \(f(z) = y \in f(B) = g(B) \). Since \(g(A) = g(B) \) we must have \(y \in g(A) \). Thus there is some \(x \in A \) so that \(y = f(x) \). But then since \(f \) is injective, \(x = z \) and so \(z \in A \). Hence \(B \subseteq A \).

Thus \(g \) is injective and the result follows.

(b) If \(|S| = |T| \) then \(|\mathcal{P}(S)| = |\mathcal{P}(T)| \).

Solution:

Proof. Assume \(|S| = |T| \). Hence there is a bijection \(f : S \to T \). We must construct an injection from \(\mathcal{P}(S) \to \mathcal{P}(T) \). We use the same function as above.

Let \(g : \mathcal{P}(S) \to \mathcal{P}(T) \) be defined by

\[
g(A) = f(A) = \{f(a) | a \in A\}
\]

where \(A \in \mathcal{P}(S) \)}
By the previous question we know that \(g \) is injective. It suffices to prove that \(g \) is also surjective. Let \(B \in \mathcal{P}(T) \) and since \(f \) is a bijection, its inverse exists and we may set

\[
A = \{ f^{-1}(b) | b \in B \}
\]

We must now prove that \(g(A) = B \).

- Let \(x \in g(A) \). Then \(x = f(a) \) for some \(a \in A \). But then \(a = f^{-1}(b) \) for some \(b \in B \). Hence \(x = f(f^{-1}(b)) = b \). So \(x \in B \).
- Now let \(x \in B \). By construction \(f^{-1}(x) \in A \). Hence \(f(f^{-1}(x)) \in f(A) = g(A) \).

Thus \(g \) is surjective and we are done.

8. Consider the function \(f : (-a,a) \to \mathbb{R} \) defined by \(f(x) = \frac{x}{a^2-x^2} \) where \(a > 0 \) is a fixed number and \(x \in (-a,a) \).

(i) Show \(f \) is bijective.

(ii) What can you conclude about the cardinalities of \((-a,a)\) and \(\mathbb{R}\)?

(iii) What can you conclude about the cardinalities of \((-a,a)\) and \((-b,b)\) for \(a,b > 0\)?

Solution:

(i) **Surjectivity:** For any \(y \in \mathbb{R} \), we show there is \(x \in (-a,a) \) s.t. \(f(x) = y \). If \(y = 0 \), take \(x = 0 \in (-a,a) \), then \(f(0) = 0 \). If \(y \neq 0 \), we solve \(y = x/(a^2 - x^2) \) which implies \(yx^2 + x - a^2y = 0 \), and hence

\[
x_\pm = \frac{-1 \pm \sqrt{1 + 4a^2y^2}}{2y}.
\]

We need to check which of the two solutions (if any) lies in \((-a,a)\). We claim \(x_+ \in (-a,a) \).

- If \(y > 0 \), then \(0 < -1 + \sqrt{1 + 4a^2y^2} < 2ay \) because \(1 < \sqrt{1 + 4a^2y^2} \) (showing the 1st "<") and \(1 + 4a^2y^2 < 1 + 4a^2y^2 + 4ay = (1 + 2ay)^2 \) (showing the 2nd "<" by taking square root). So we conclude that if \(y > 0 \) then \(x_+ \in (0,a) \).
- If \(y < 0 \), then \(0 < -1 + \sqrt{1 + 4a^2y^2} < -2ay \), because \(1 < \sqrt{1 + 4a^2y^2} \) (for 1st "<") and \(1 + 4a^2y^2 < 1 + 4a^2y^2 - 4ay = (1-2ay)^2 \) (for 2nd "<" by taking square root). We conclude \(x_+ \in (-a,0) \). **Careful:** dividing the negative number \(2y \) changes direction of inequality!

This shows \(f \) is surjective.

Note

\[
|x_+| = \frac{|1 + \sqrt{1 + 4a^2y^2}|}{2|y|} \geq \frac{\sqrt{1 + 4a^2y^2}}{2|y|} \geq \frac{4a^2y^2}{2|y|} = |a|.
\]

Thus \(x_+ \notin (-a,a) \). So we **CANNOT** use \(x_- \) for surjectivity of \(f \).
Injectivity: If \(f(x_1) = f(x_2) \), then \(x_1/(a^2 - x_1^2) = x_2/(a^2 - x_2^2) \). This implies \(x_1(a^2 - x_2^2) - x_2(a^2 - x_1^2) = 0 \). Then \((x_1 - x_2)(a^2 + x_1x_2) = 0 \). Since \(|x_1| < a \) and \(|x_2| < a \), we have \(|x_1x_2| < a^2 \), therefore \(a^2 + x_1x_2 \neq 0 \). So \(x_1 - x_2 = 0 \), and \(f \) is injective.

(ii) \(|(-a, a)| = |\mathbb{R}|\).

(iii) Write \(f_a : (-a, a) \to \mathbb{R} \) defined by \(f_a(x) = x/(a^2 - x^2) \) and \(f_b : (-b, b) \to \mathbb{R} \) given by \(f_b(x) = x/(b^2 - x^2) \). By (i), \(f_a, f_b \) are both bijective. Hence \(f_b^{-1} \circ f_a : (-a, a) \to (-b, b) \) is bijective. It follows \(|(-a, a)| = |(-b, b)|\).

9. Show the following pairs of sets \(S \) and \(T \) are equinumerous by finding a specific bijection between the sets in each pair (you need to prove your function is bijective).

(a) \(S = [0, 1] \) and \(T = [1, 4] \)

Solution:

\[f(x) = 1 + 3x \]

\[1 + 3x = 1 + 3z \]

\[\text{Hence } f \text{ is injective.} \]

• Surjective: Let \(y \in [1, 4] \) and set \(x = \frac{y - 1}{3} \). Since \(y \geq 1 \), \(x > 0 \) and since \(y \leq 4 \), \(x \leq 1 \). Further

\[f(x) = 1 + 3 \cdot \frac{y - 1}{3} = y \]

as required. Hence \(f \) is surjective.

(b) \(S = (0, 1) \) and \(T = (0, \infty) \)

Solution:

\[g(x) = \frac{1}{x} - 1 \]

\[\frac{1}{x} - 1 = \frac{1}{z} - 1 \]

\[\frac{1}{x} = \frac{1}{z} \]

\[z = x \]

Thus \(g \) is injective.
• Surjective: Let \(y \in (0, \infty) \) and then set \(x = \frac{1}{y+1} \). Since \(y \in (0, \infty) \) we must have \(0 < x < 1 \). Then

\[
g(x) = \frac{1}{y+1} - 1
= \frac{y + 1}{1} - 1 = y
\]

Hence \(g \) is surjective.

(c) \(S = [0, 1] \) and \(T = [0, 1) \)

• Hint for (c) — define your function using 2 cases: \(x = 1/n \) and \(x \neq 1/n \) for \(n \in \mathbb{N} \).

Then consider why \(|\{1, 1/2, 1/3, 1/4, \ldots\}| = |\{1/2, 1/3, 1/4, \ldots\}| \)

Solution: The key here is to take \(x = \frac{1}{n} \) and map it to \(\frac{1}{1+1/x} = \frac{1}{1+\frac{1}{a}} \). This “shuffles” \(1 \mapsto \frac{1}{2} \) and \(\frac{1}{2} \mapsto \frac{1}{3} \) and so on.

Proof. Let \(f : S \to T \) be defined by

\[
f(x) = \begin{cases} \frac{1}{1+\frac{1}{x}} & \text{if } x = 1/n, n \in \mathbb{N} \\ x & \text{otherwise} \end{cases}
\]

We prove that \(f \) is a bijection.

• Injective: Let \(x, z \in S = [0, 1] \) and assume \(x \neq z \). There are four cases to consider depending on whether or not \(\frac{1}{x}, \frac{1}{z} \in \mathbb{N} \) or not.

 – If \(\frac{1}{x} = a, \frac{1}{z} = b \) with \(a, b \in \mathbb{N} \) then we must have \(a \neq b \). Hence \(1 + a \neq 1 + b \) and so \(\frac{1}{1+a} = f(x) \neq f(z) = \frac{1}{1+b} \).

 – If \(\frac{1}{x}, \frac{1}{z} \notin \mathbb{Z} \) then \(f(x) = x \) and \(f(z) = z \) and so \(f(x) \neq f(z) \).

 – If \(\frac{1}{x} = a \in \mathbb{N} \) and \(\frac{1}{z} \notin \mathbb{N} \) then we have \(f(x) = \frac{1}{1+a} \) and \(f(z) = z \). Assume, to the contrary that \(f(x) = f(z) \). Then \(\frac{1}{x} = 1 + a \in \mathbb{N} \) — this gives a contradiction. Hence \(f(x) \neq f(z) \).

 – If \(\frac{1}{x} = a \notin \mathbb{N} \) and \(\frac{1}{z} \in \mathbb{N} \) then we have \(f(z) = \frac{1}{1+a} \) and \(f(x) = x \). Assume, to the contrary that \(f(x) = f(z) \). Then \(\frac{1}{x} = 1 + a \in \mathbb{N} \) — this gives a contradiction. Hence \(f(x) \neq f(z) \).

In all four cases, if \(x \neq z \) then \(f(x) \neq f(z) \), and so \(f \) is an injection.

• Surjective: Let \(y \in [0, 1) \). Then there are 2 cases to consider. If \(y = 1/n \) for \(n \in \{2, 3, \ldots\} \) or not.

 – If \(y = 1/n \) then set \(x = \frac{1}{y-1} \). Since \(y = 1/n, x = 1/(n-1) \) and so \(x \) is the reciprocal of a natural number and \(0 < x < 1 \). Hence

\[
f(x) = \frac{1}{1+\frac{1}{y-1}} = y
\]
If \(y \neq 1/n \) for any \(n \in \mathbb{N} \) then set \(x = y \). Now \(x \in [0, 1] \) and \(f(x) = y \).

Hence \(f \) is surjective.

10. Using the guide given below, complete the proof of the following very useful criteria for determining when a set is countable.

Theorem. Let \(S \) be a nonempty set. The following three conditions are equivalent.

(a) \(S \) is countable.

(b) There exists an injection \(f : S \to \mathbb{N} \).

(c) There exists a surjection \(g : \mathbb{N} \to S \).

Guide — split the proof into 3 implications as indicated below.

(1) First prove (a) \(\implies \) (b): \(S \) is countable implies there is a bijection \(h \) from \(I_n = \{1, \ldots, n\} \) or from \(\mathbb{N} \) to \(S \). Consider its inverse.

(2) Second prove (b) \(\implies \) (c): hint - \(f \) is a bijection from \(S \) to \(f(S) \), hence \(f^{-1} : f(S) \to S \) is defined. Define \(g : \mathbb{N} \to S \) by \(g(n) = f^{-1}(n) \) if \(n \in f(S) \) and \(g(n) = s_0 \) if \(n \notin f(S) \) for some fixed \(s_0 \in S \).

(3) Finally prove (c) \(\implies \) (a): For the given surjective \(g : \mathbb{N} \to S \), define \(h : S \to \mathbb{N} \) by \(h(n) \) the smallest \(i \in \mathbb{N} \) s.t. \(g(n) = s_i \). Then \(h(S) \) is countable (you can use the fact that any subset of a countable set is countable). Finally, draw conclusion on \(S \).

Solution: We split the proof into the 3 parts as suggested above.

Assume (a) is true. Hence \(S \) is either finite or denumerable.

- If \(S \) is denumerable, then by definition there is a bijection \(f : S \to \mathbb{N} \) and we are done.

- If \(S \) is finite then there must be a bijection \(h : \{1, 2, \ldots, n\} \to S \) for some \(n \in \mathbb{N} \). The inverse \(h^{-1} \) defines a bijection from \(\mathbb{N} \to \{1, 2, \ldots, n\} \). Define \(g : \{1, 2, \ldots, n\} \to \mathbb{N} \) by \(g(i) = i \), and \(h \) is injective. Then \(g \circ h^{-1} : S \to \mathbb{N} \) is injective as it is the composition of two injections (by a theorem from class).

Assume (b) is true, so that there is an injection \(f : S \to \mathbb{N} \). Define \(T = f(S) \subseteq \mathbb{N} \), let \(h : S \to T \) be a function defined by \(h(x) = f(x) \). Then \(h \) is injective (since \(f \) is injective) and also surjective. To see this, let \(t \in T = f(S) \). By definition of the image of a set, there is \(x \in S \) so that \(t = f(x) = h(x) \).

Now, since \(h \) is bijective, its inverse \(h^{-1} : T \to S \) exists. Now let \(q \in S \), and define \(g : \mathbb{N} \to S \) by

\[
g(n) = \begin{cases} h^{-1}(n) & \text{if } n \in f(S) = T \\ q & \text{otherwise} \end{cases}
\]

We claim that this function \(g \) is a surjection. Let \(y \in S \) and set \(z = f(y) \in f(S) \). Then \(g(z) = h^{-1}(z) = f^{-1}(z) = y \) (since \(f \) is a bijection from \(S \) to \(f(S) \), this inverse is well defined). Hence \(g \) is a surjection.
Assume (c) is true. Hence there is a surjection \(g : \mathbb{N} \to S \). Let \(y \in S \). Since \(g \) is surjective, the set

\[
g^{-1}(\{y\}) = \{n \in \mathbb{N} : g(n) = y \} \subseteq \mathbb{N}
\]

is non-empty. Define a function \(h : S \to \mathbb{N} \) by

\[
h(y) = \text{the minimum element of } g^{-1}(\{y\}).
\]

We claim \(h \) injective: If \(h(y) = h(w) \) which equals some \(k \in \mathbb{N} \), then \(k = \text{the minimum element of } g^{-1}(\{y\}) \) and \(k = \text{the minimum element of } g^{-1}(\{w\}) \). This means \(g(k) = y \) and \(g(k) = w \), hence \(y = w \) as \(g \) is a function. So \(h \) is an injection from \(S \to \mathbb{N} \) and thus is a bijection from \(S \to h(S) \subseteq \mathbb{N} \). Any subset of \(\mathbb{N} \) must be countable (by a theorem from class) and so \(h(S) \) is countable and thus \(S \) is countable.

11. Prove that \(|(0, \infty)| = |\mathbb{R}| \) by finding a bijection between the two sets.

Hint: look at Theorem 10.13 — it will give you ideas.

Solution: Use \(f : (0, \infty) \to \mathbb{R} \) defined by \(f(x) = x - 1/x \).

- **Injective.** Let \(a, b \in (0, \infty) \) and assume \(f(a) = f(b) \). Then
 \[
 a - 1/a = b - 1/b \\
 a^2b - b = ab^2 - a \\
 a^2b - ab^2 + a - b = 0 \\
 (a - b)(ab + 1) = 0
 \]

 Thus we either have \(a = b \) or \(ab = -1 \). Since \(a, b > 0 \) the second cannot happen and so \(a = b \). Thus \(f \) is injective.

- **Surjective — (use quadratic formula to get this)** Let \(y \in \mathbb{R} \) and then let

 \[
 x = \frac{y + \sqrt{y^2 + 4}}{2}
 \]

 Then \(f(x) \) is

 \[
 x - 1/x = \frac{y + \sqrt{y^2 + 4}}{2} - \frac{2}{y + \sqrt{y^2 + 4}} \quad \text{common denominator}
 \]

 \[
 = \frac{(y + \sqrt{y^2 + 4})^2 - 4}{2(y + \sqrt{y^2 + 4})}
 \]

 \[
 = \frac{y^2 + 2y\sqrt{y^2 + 4} + y^2 + 4 - 4}{2(y + \sqrt{y^2 + 4})}
 \]

 \[
 = \frac{2y^2 + 2y\sqrt{y^2 + 4}}{2(y + \sqrt{y^2 + 4})} = y
 \]

 as required. It remains to show that \(x \in (0, \infty) \).
Note that since \(y \in \mathbb{R}, y^2 + 4 > y^2 > 0. \) Hence if \(y > 0, y + \sqrt{y^2 + 4} > 0. \) And if \(y < 0 \) then \(y + \sqrt{y^2 + 4} > 0. \) Thus \(x > 0 \) as required.

Hence \(f \) is surjective.

- Since \(f \) is injective and surjective, it is bijective and the two sets have the same cardinality.

12. Let \(A, B, C, D \) be non-empty sets. Prove that

\[
\text{if } |A| = |C| \text{ and } |B| = |D| \text{ then } |A \times B| = |C \times D|.
\]

Remember — the sets may or may not be finite. This also applies to the remaining questions below.

Solution:

- Since \(|A| = |C| \) and \(|B| = |D| \) there exist bijections \(f : A \to C \) and \(g : C \to D. \)
- Define \(h : A \times B \to C \times D \) by \(h(a, b) = (f(a), g(b)). \) We must show it is a bijection.
- Injection. Let \((a_1, b_1), (a_2, b_2) \in A \times B. \) Assume that \(h(a_1, b_1) = h(a_2, b_2). \) By our definition of \(h \) we know that \(f(a_1) = f(a_2) \) and so \(a_1 = a_2. \) Similarly, \(g(b_1) = g(b_2) \) and so \(b_1 = b_2. \) Thus \((a_1, b_1) = (a_2, b_2) \) and so \(h \) is injective.
- Surjection. Let \((c, d) \in C \times D. \) Since \(f \) and \(g \) are surjective there are \(a \in A \) and \(b \in B \) so that \(f(a) = c \) and \(g(b) = d. \) Now \((a, b) \in A \times B \) and \(h(a, b) = (c, d). \) Thus \(h \) is surjective.
- Since \(h \) is injective and surjective, it is bijective and the two sets have the same cardinality.

13. Let \(A \) be an non-empty set.

(a) Prove that \(|A| \leq |A \times A|. \)

Solution:

- It suffices to find an injection from \(A \) to \(A \times A. \)
- Define \(f : A \to A \times A \) by \(f(a) = (a, a). \)
- Let \(a, b \in A \) and assume \(f(a) = f(b). \) Thus \((a, a) = (b, b) \) and so we must have \(a = b. \) Hence \(f \) is injective.

(b) Prove that \(|A| \leq |\mathcal{P}(A)|. \)

Solution:

- It suffices to find an injection from \(A \) to \(\mathcal{P}(A) \) (we did this in a previous homework).
14. Prove the following theorem:

Theorem. Let A, B, C be nonempty sets. Then

(a) If $A \subseteq B$ then $|A| \leq |B|$.
(b) $|A| \leq |A|$.
(c) If $|A| \leq |B|$ and $|B| \leq |C|$ then $|A| \leq |C|$.

Solution:

- Define $f : A \to B$ by $f(a) = a$. It is clearly an injection.
- Define $f : A \to A$ by $f(a) = a$. This is the identity function which is bijective and so injective.
- Assume $|A| \leq |B|$ and $|B| \leq |C|$. Thus there are injections $f : A \to B$ and $g : B \to C$. By theorem 9.7 the compositions of injections is also an injection, so $g \circ f : A \to C$ is an injection.

15. Let A, B be sets. Prove that

if $|A - B| = |B - A|$ then $|A| = |B|$.

Hint: draw a careful picture

Hint2: Given a bijection $f : (A - B) \to (B - A)$ define

$$g : A \to B$$

$$g(x) = \begin{cases} f(x) & x \in (A - B) \\ x & x \notin (A - B) \end{cases}$$

Solution:

![Diagram showing set operations and bijection](image)
• Let \(g : A \to B \) be defined as above. We need to show that \(g \) is injective and surjective.

• Injective. Let \(x, z \in A \) and assume \(g(x) = g(z) \). This image must be in \(B \), but it may either be in \(A \) or not in \(A \) (that is, either \(y \in A \cap B \) or \(y \in B - A \)).

 – Assume \(g(x) = g(z) \notin A \). Then both \(x, z \in A - B \) (otherwise their images under \(g \) would be in \(A \)). Hence \(g(x) = f(x) \) and \(g(z) = f(z) \). Since \(f \) is injective, it follows that \(x = z \).

 – Now assume that \(g(x) = g(z) \in A \). Then both \(x, z \in A \) (otherwise their images under \(g \) would be in \(B - A \)). Then \(g(x) = x \) and \(g(z) = z \) and so \(x = z \).

Hence \(g \) is injective.

• Surjective. Let \(y \in B \). Either \(y \in A \) or \(y \notin A \) (that is, either \(y \in A \cap B \) or \(y \in B - A \)).

 – Assume \(y \in A \) then let \(x = y \). By the definition of \(g \), \(g(x) = x = y \).

 – Now assume \(y \notin A \), then since \(f \) is surjective, there exists \(x \in A - B \) so that \(f(x) = y \). Now since \(x \in A - B \), it follows that \(g(x) = f(x) = y \).

Hence \(g \) is surjective.

• Hence \(g(x) \) is bijective as required.