HOMEWORK 3 Solutions: Math 265 Leah Keshet
I thank Prof Daniel Coombs for making these available to us for your practice
and learning.

Problem 1: Solve the following initial value problems for y(z):

(a) v -4y’ -5y =0, y(-1) =3, y'(-1)=9.

(b) y” + 2 — 5y — 6y =0, 4(0) =2, '(0)=6, y"(0)=0.

(Hint: this is a linear equation whose characteristic equation is cubic. Recall that for a cubic equation
5+ ar? + br + ¢ = 0 with roots 7,73, 73, it is true that ¢ = ryrera.)

(e) ¥ +y=2e"" y(0)=0, y'(0)=0.

() y" +2 +y=a?+1-e% y(0)=0, y(0)=2.

(e) y" 2y +y =8¢, y(0)=3, y'(0)=2.

(f) v’ + 2 + 2y = Heos(2z), y(m) = -1/2, y'(7) = 1.

Problem 1 Solution:

(a) The characteristic equation is % — 4r — 5 = 0 which has roots r; = —1 and 75 = 5. The general solution
is then y(t) = Cre™® + Coe®. Applying the initial conditions we find C) = e™!, C = 2¢°, and the solution
to the initial value problem: y(t) = e~(¥+1) 4 2e5(+1),

(b) The characteristic equation is r® + 2% — 5r — 6 = 0 which has roots v, = 2, ry = —1, and r3 = —3. The
general solution is then y(t) = C1e®® + Cae™® + C3e¢73. Applying the initial conditions we find &y = 1,
Cq =2, C3 == —1, and the solution to the initial value problem: y{t) = e® 4 2e™% — 732,

(c) First consider the homogeneous equation ¥ -+, = 0. The associated characteristic equation is r2+1 =0
which has roots r1,5 = #i. The homogeneous solution is then yp(z) = Cjcos(z) + Cysin(z). To find the
particular solution o the inhomogeneous equation vy, + yp = 2¢™% pose the guess y,(z) = Ae™*. Substi-
tuting the guess into the equation, noting that y,(z) = Ae™", we obtain Ae™ + Ae™ = 2¢77, and find
that A = 1. The particular solution is yp(xz) = e™®. The general solution is then y(z) = yn(z} + yp(z)
= y(z) = C) cos(x) + Casin(z) + e™*. Applying the initial conditions we find 7 = ~1, Co = 1, and the
solution to the initial value problem: y(x) = — cos(z) + sin{z) + ™%,

(d) First consider the homogeneous equation yj -2y}, +yx = 0. The associated characteristic equation is v+
2r-+-1 = 0 which has r = —1 as a repeated root. The homogeneous solution is then yy,{z) = Cre™* + Chze™™.
To find the particular solution to the inhomogeneous equation y;,’ 4 2y;, Yy = z? + 1 — €® pose the guess
yp(z) = Az? + Bz + C'+ De®. Substituting the guess into the equation, noting that y/,(z) = 24z + B + De®
and y, {x) = 24 4+ De®, we obtain (24 + De®) +2(2Ax + B + De*) + (Ax® + Bz 4+ C + De*) = a2 + 1 — ¢°
= Azt + (4A+ Bla+ 24 +2B+C)+4De* =z* +1—¢€® SoA=1,4A+B =0,24+2B+C =1,
4D = ~1 and, solving for A, B, €, and D, we find A = 1, B = -4, U = 7, and D = -1/4. The
particular solution is y,(z) = @ — 4z + 7 — €®/4. The general solution is then y(z) = yn(x) + yp(z) =
y(z) = Cie "+ Chze ™ +a22 — 4z +T7—e®/4. Applying the initial conditions we find Cy = —27/4, Cy = ~1/2,
and the solution to the initial value problem: y(z) = —27e™%/4 — ze™/2 + 2 — dw + 7 — * /4.



(e} First consider the homogeneous equation yj — 2y3, + yn = 0. The associated characteristic equation
is 72 — 2r + 1 = 0 which has 7 = 1 as a repeated root. The homogeneous solution is then y,{z) =
Cie® + Cyze®. To find the particular solution to the inhomogencous equation yy, + 2y, +y, = 8¢® pose the
guess yp{x) = Az?e®. Substituting the guess into the equation, noting that y,(z) = Az?e® + 2Aze® and
yi(z) = Aze™ + 4Axe® + 2Ae”, we obtain (Az%e” + 4Axe® + 24e®) — 2(Az’e® + 24ze®) + (AzPe®) = 8e®
= 24¢® = 8¢%. So 24 = 8 or A = 4 and the particular solution is y,(z) = 4z%*. The general solution is
then y(z) = yn(2) 4+ yp(x) = y(@) = Cre® + Coxe® + 4z2e®. Applying the initial conditions we find €} =3,
C, = —1, and the solution to the initial value problem: y(z) = 3¢® — ze® + 4a?e®,

(F) First consider the homogeneous equation yj/ + 2y}, + 2y, = 0. The associated characteristic equation
is 7% 4 27 + 2 = 0 which has which has roots ry = —1 +14, r9 = —1 — 4, and r3 = —3. The homogeneous
solution is then gy, (2) = C1e7% cos(z) + Cae™*sin(z). To find the particular solution to the inhomogeneous
equation yj + 2y, + 2y, = 5cos(2x) pose the guess y,(x) = A cos(2x) ++ Bsin(2z). Substituting the guess
into the equation, noting that y,(x) = —2A4sin(2z) + 2B cos(2x) and y; (z) = —4Acos(2z) — 4B sin{2z), we
obtain (—44 cos(2z) — 4B sin(2z)) + 2(—2Asin(2z) -+ 2B cos(2z)} + 2(A cos(2z) -+ B sin(2x)) = 5 cos(2z) =
(~2A4 + 4B) cos(2x) + (—4A — 2B)sin(22) = Scos(2z). So —24 +4B =5, ~4A — 2B = 0, and, solving
for A and B we find A = ~1/2, B = 1. The particular solution is y,(z) = — cos{2z)/2 + sin(2z)/2. The
general solution is then y(z) = yp(z) +yp(z) = y(z) = Cre~* cos(ax) + Cae™? sin(z) — cos(2x)/2 +sin(2z)/2.
Applying the initial conditions we find C; = 0, Cy = €™, and the solution to the initial vaiue problem:
y(z) = e” " sin(z) ~ cos{2x)/2 + sin(2z) /2.

Problem 2: The suspension in a car can be modeled as a vibrating spring with damping due to the shock
absorbers. This leads to the equation for the vertical displacement z(t) at time ¢,

mz'{t) + bz’ (t) + kz(t) =0,

where m is the mass of the car, b is the damping constant of the shocks, and % is the spring constant. If the
mass m of the car is 1000kg and the spring constant & is 3000kg/s?, determine the minimum value for the
damping constant b in kilograms per seconds that will provide a smooth, oscillation-free ride. If we replace
the springs with heavy-duty ones having twice the spring constant k, how will this minumum change?

Problem 2 Solution:

The equation for @ is ma” + bz’ + kx = 0. You could plug in the numerical values for the mass m and spring
constant k and solve, that would be fine. However here we leave the in the symbols so that we can answer
both questions ab once.

The characteristic equation is mr? + br + k = 0 which has roots

—b £ /D% — dmk

2m

T2 =

For there to be no oscillations we need 1,2 to be real, so we require that h%—4mk > 0. Therefore the minimum
value for the damping constant b that will provide a smooth, oscillation-free ride (also known as the “critical
damping”) is given by b2 ;.. - 4mk = 0. Thus we find that minimum bmin = 9v/mik. With the values for mass
and spring constant k given we obtain the minumum damping b, = 1000+/3kg/s. If the spring constant



doubles i.e. the spring constant is now k = 2k, then the minimum damping is by, = 2\/@ = 2v2mk. So
if the springs are replaced with heavy-duty ones with double the spring constant, the minimum damping for
no oscillations INCREASES by a factor of +/2. The value for that larger minumum damping, given a mass
m = 1000kg and a spring constant k= 2k = 6000kg/s2, is Drmin = 1000+/Bkg/s.

Problem 3: A vibrating spring without damping can be modeled by the initial value problem:
my" (t) + ky(t) =0 y(0) =yo, ¥'(0)=w

for m the mass of the spring and k is the spring constant.

(a) If m = 10kg, k = 250kg/s?, yo = 0.3m, and 3 = —0.1m/s, find the equation of motion y(t) for this
undamped vibrating spring.

(b) What is the frequency of oscillation of this spring system?

Problem 3 Solution:

(a) As discussed in class, the characteristic equation for my”(t) + ky(t) = 0 is mr? 4 k = 0 which has
roots 7 = +iv/k/m (both the spring constant k and the mass m are positive). The solution is therefore
y(t) = Cy cos(wt) +-Cy sin(wt), where w = 1/k/m is the frequency of oscillation. As we are given k = 250kg/s*

and m = 10kg, w = \/ (250kg/52) /{10kg) = 557 Applying the initial conditions y(0) = 0.3m and
y{0) = —0.1m/s we find C1 = 0.3 and Cp = --0.02. Thus the equation of motion for this undamped vibrating
spring is y(t) = 0.3 cos(5t) ~ 0.02sin(5t). Alternatively we could right the solution as y(t) = Rcos{5t + §).
Applying the initial conditions we find R = +/0.3% + 0.02? and § = tan™1(-0.02/.3) = —tan™1(1/150); the
solution is y{t) = v/0.3% = 0.022 cos(5¢ — tan~1{1/150)). Either way of expressing y(¢) is fine.

(b) As mentioned in the solution of part (a}, the frequency of oscillation is w = 5571,

Problem 4: A vibrating spring with damping can be modeled by the initial value problem:
my” () + by (t) + ky(t) =0 y(0) =y, V'(0)=w

for m the mass of the spring, k is the spring constant, and b the damping constant.

(a)Using the same values for m, k, yg, and g as in Problem 3, now with b = 60kg/s, find the equation of
motion y(t) for this damped vibrating spring.

(b) What is the frequency of oscillation of this spring system?

{c) Compare the results of probiems 3 and 4 and determine what effect the damping has on the frequency of
oscillation. What other effects does it have on the solution? What is the long-time behaviour of the solution
(behaviour of the solution as t — 00)7

Problem 4 Solution;
(a) As in Problem 2 the characteristic equation is mr? 4 br + k = 0 which has roots

; ~b £ b2 —dmk
1,2 = .
! 2m



We are given that m = 10kg, & = 250kg/s, and b = 60kg/s so the roots are 712 = —3 =& 4. Note
that b? — dmk = —6400 < 0: The damping is small enough so that there are oscillations. The general
solution to the differential equation is then y{(f) = Cie~%tcos(4t) + Cre~*sin(4t). Applying the initial
conditions y(0) = 0.3m and y(0) = —0.1m/s we find C; = 0.3 and Cp = 0.16. Thus the equation of
motion for this damped vibrating spring is y(t) = 0.3¢™% cos(4t) + 0.16e™* sin(4t). Alternatively we could
right_the solution as y{t) = Re=3 cos(4t + 6). Applying the initial conditions we find R = 324162
and & = tan~*(.16/.3) = tan~1(8/15); the equation of motion for this damped vibrating spring is y(t) =
V32 + .16%~% cos(4t + tan~1(8/15)). Either way of expressing y(t) is fine.

(b) The frequency of oscillation, or rather the “quasi-frequency,” is v b2 —dmk/2m = 4s7 .

(c) Note that smali damping decreases the frequency of oscillation. The frequency of osciilation on the
undamped vibrating spring is 5s~1 (from Problem 3), and the quasi-frequency of oscillation on the damped
vibrating spring is 4s~ 1.

Other effects of the damping:

(1) The period of the vibrating spring without damping is less than the quasi-period of the vibrating spring
with damping. We see that in Problems 3 and this problem, 27 /5 < 27/4.

(2) Importantly, the damping damps the oscillations: the amplitude Re™3t gets smaller and smaller as time
goes on. See the plots:
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Finally, the long-time behaviour of the solution for the motion of & damped spring, i.e. the behaviour of
the solution as £ — oo, is that the amplitude of the oscillations decreases with time and goes to zero. This
actually happens quite rapidly - see the plot above.

Problem 5 Consider the nonhomogeneous second order ODE

y" =2y — 3y = 2e7".
The general solusion of this equation is y(t) = c1y1 () +caya(t) +Y5(t) where 11(2), yo(t) are a fundamental set
of solutions to the corresponding homogeneous ODE and Y,(t) is a particular solution to the nonhomogeneous
ODE.



(a) Suppose we “guess” a form for the particular solution as Y),(t) = Ae~t (since this is similar to the form
of the time-dependent forcing term.) Plug this function into the ODE and show that you arrive at a
contradiction. Why does this happen?

(b) Now revise your guess to the form Yp(¢) = Ate™". Show that this works, find the value of A, and
thereby also find the general solution to the nonhomogeneous ODE.

Problem 6 Solution:

(a) Note that the corresponding homogeneous problem is y” — 2y’ — 3y = 0, which has characteristic
equation 7% - 2r — 3 = (r — 3){(r + 1) = 0 so r = 3,—1 are the roots, and the fundamental set of
solutions is e7%,¢%%. If we use Yp(t) = Ae™t, we get Yj{t) = —Ae 4, Y}/ (t) = Ae™". plugging into the
ODE leads to Ae™t — 2(—Ae™t) — 3(Ae™*) = 2¢~*. Canceling a factor of ¢~ and simplifying leads
to 0 = 2e* which is a contradiction. This stems from the fact that y;(¢) = e™* is a solution to the

homogeneous problem.

(b) Now assume that ¥,(t) == Ate™*. Then the derivatives we need are ¥y(t) = A(1 —t)e™" and ¥}'(t) =
Ae~t(t — 2). Sub these into the nonhomogeneous ODE to get (after canceling the exponential factor):
(At—2A) —2(A— At) - 3At = 2. This has to hold for all t. Rewrite it as (A+24~3A)t—~4A = 2. Note
that the coefficient of ¢ is zero, so equation simplifies to —4A4 = 250 A = ~1/2 and Y, (t) = —(1/2)te™".
The general solution is thus

y(t) = cryr (t) -+ coua(t) + Yp(t) = cre™t + cpe® — (1/2)te ™"

Problem 6
" Consider a circuit with a resistor, inductor, and capacitor in series (Fig 7?), and suppose this is connected
t0 a constant voltage V. Recall that the ODE satisfied by the charge ¢{t) across the capacitor in such a circuit
is
L¢" + R + (1/C)g = V.
Also recall that the current J(¢) in the circuit is related to the charge g(t) by I = ¢'(t).
(a) Use the above information to find the differential equation satisfied by the current I{t).

(b) Consider the {unrealistic) case that the resistance in R = 0 in this circuit. Determine the behaviour of
I(t), i.e. find the general solution to the equation you found in part (a). What is the frequency of the
oscillation?

(¢) Now suppose that R is gradually increased. At what value of R will there be no ascillation? Sketch
the behaviour of I(t) for values of R below and above that critical value.

(d) Someone has set up the circuit with (R # 0) so that there is initially a charge on the capacitor when a
switch is closed so that at time t = 0, g(0) = go and I{0) = [y are known. Find I{t) using these initial
conditions.

Problem 6 Solution;

(a) Differentiate both sides with respect to ¢t and use I = ¢'(t) to obtain LI" + RI' + (1/C)] =0 (since V
is constant).

R



. In the case
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of R = 0 these raots are 19 = =+/1/(LC)i which are pure imaginary. Then defining w = +/1/(LC)
we have a general solution I(t) = ¢; cos(wt) + ez sin(wt).

(b) The characteristic equation is Lr+Rr+(1/C) = 0 with roots 71,2 =

(¢) The oscillations will cease when the roots are no longer complex, i.e. when R? —4(L/C) = 0 so when
R=2./L/C.

(d) If R # 0 then the general solution is I(¢) = e“*[c; cos(wt) + ¢z sin{wt)] where

|R? — 4(L/C)]|

= —R/2 -
o R/2L, w 5T

We have two initial conditions, but one of them is in terms of the charge. The latter can not be used
directly as the ODE is for the current I{t). However, we can use the alternate equation Lq” + Rq' +
(1/C)q = V together with I(£) = ¢(t) to note that LI’ + RI + (1/C)g = V and in particular, at time
¢ = 0, this means that LI'(0) -+ RI(0) + (1/C)q(0) = V(0) = V (since V is constant). Thus, we can
actually rewrite one of the initial conditions as I'{(0) = V—"*(ﬂ“’——"i—(l% = A, (We define A to stand
for this combination of constants.) We now find the constants ¢, ¢; using initial conditions. This leads
to the system of equations ¢ = Iy, 00, +wep = A. We find that ¢z = —"if’;’ﬂ and obtain the desired
solution, I(t) = e”¢[Iy cos{wt) + f‘l%ﬂ sin{wt)].

Problem 7 Consider the circuit shown in Fig 7?7 and assume that V' = 0 and a switch is closed at ¢t = 0. In
this circuit, the inductance is L = 0.05 Henrys, Capacitance is €' = 2 x 10~* Farads and the resistance is
R = 108, The initial charge on the capacitor at time ¢ = 0 is 2 coulombs. Determine the current I(t) for
t=0

Problem 7 Solution: We write the differentia) equation for q(¢} as follows: L¢” + R¢' +¢/C =V = 0 We
have R? — 4L/C = 10? — 4. (0.05)/2 - 107* = —900. This means that the circuit is underdamped and
w = Im{r) = +/900/(2 - 0.05) = 300, o = Re(r) = ~R/2L = —~10/(2 - 0.05) = ~-100. Thus

q(t) = e~ 9% (c) cos(300t) + c3 sin(300t))

Until the switch is closed, we have I(0) = ¢'(0) = 0 and ¢(0) = 2. Thus 2 = ¢(0) = ¢1,0 = ¢'{0) =
300¢; — 100¢;, 80 €1 = 2,cp = 2/3 and the solution is

q(t) = e~ 0%(2c0s(300t) + (2/3) sin(300¢)).
Now we can find that the current, by differentiating the above, to arrive at

i(t) = ¢'(t) = —100e™ 19942 cos(300t)+(2/3) sin(300¢))+e ™% (—600 sin(300)+200 cos(300)) = 6666 sin(300t)



