In-class problem:

\[y'' + 4y = 5 \cos(3t) \quad y(0) = 0, y'(0) = 0 \]

- Comp. hom. prob. \[y'' + 4y = 0 \]
 char. eqn \[r^2 + 4 = 0 \]
 roots \[r = \pm 2i \quad r^2 = -4 \]
 soln to hom prob.
 \[y(t) = C_1 \cos(2t) + C_2 \sin(2t) \quad \text{"natural frequency"} \]

- Particular soln:
 guess \[y_p(t) = A \cos(3t) + B \sin(3t) \]
 form of forcing function may need this term too
 This does not duplicate the solns to hom problem (since frequencies not same)
 So guess should be fine.

- Find A, B:
 need \[y_p'(t) = -3A \sin(3t) + 3B \cos(3t) \]
 \[y_p''(t) = -9A \cos(3t) - 9B \sin(3t) \]

 plus into \[y'' + 4y = 5 \cos(3t) : \]
 \[(-9A \cos(3t) - 9B \sin(3t)) + 4(A \cos(3t) + B \sin(3t)) = 5 \cos(3t) \]

 sort the terms:
 \[\cos(3t) \left[-9A + 4A \right] = 5 \cos(3t) \quad \Rightarrow -5A = 5 \quad A = -1 \]
 \[\sin(3t) \left[-9B + 4B \right] = 0 \quad \Rightarrow B = 0 \]

 so \[y_p(t) = -1 \cdot \cos(3t) + 0 \cdot \sin(3t) = - \cos(3t) \]

- Genl soln:
 \[y(t) = C_1 \cos(2t) + C_2 \sin(2t) - \cos(3t) \]
 soln to hom prob. \(\overline{\text{part. soln}} \)

- Use initial cond's
 \[y(0) = 0 \quad \Rightarrow \quad \text{setup} C_1 - 1 = 0 \quad C_1 = 1 \]
 \[y'(0) = 0 \quad \Rightarrow \quad C_2 = 0 \]

- Soln:
 \[y(t) = \cos(2t) - \cos(3t) \]