1. (Review) Two spherical cells are connected by a thin “neck” so that when one expands, the other contracts. Let V_1 and V_2 denote the volumes of the two cells and assume that the total volume is fixed. If the radius of cell 1 decreases at a constant rate, at what rate does the radius of the second cell change at the instant when the ratio of the radii (r_1/r_2) is 2?

Solution Let r_1, r_2 be the two radii. Since the cells are spherical, $V_i = (4/3)\pi r_i^3$. So

$$V_1 + V_2 = V = \text{constant} \Rightarrow \frac{dV_1}{dt} + \frac{dV_2}{dt} = 0 \Rightarrow \frac{dV_1}{dt} = -\frac{dV_2}{dt}$$

Now converting to radii

$$\frac{d(4/3)\pi r_1^3}{dt} = -\frac{d(4/3)\pi r_2^3}{dt} \Rightarrow \frac{4}{3}\pi \cdot 3r_1 \frac{dr_1}{dt} = -\frac{4}{3}\pi \cdot 3r_2 \frac{dr_2}{dt} \Rightarrow r_1 \frac{dr_1}{dt} = -r_2 \frac{dr_2}{dt}$$

We know that the radius of cell 1 decreases at a constant rate, so that $dr_1/dt = -k$. From this we can conclude that

$$\frac{dr_2}{dt} = -\frac{r_1^2}{r_2^2} k.$$

At the instant that the ratio $r_1/r_2 = 2$ we get

$$\frac{dr_2}{dt} = 4k.$$

2. A pond has two populations of amoebae, N_1, N_2. The populations start out with $N_1 = 100$ and $N_2 = 40$ at time $t = 0$. (a) Assuming unlimited growth, write down the differential equations satisfied by N_1, N_2. (b) You observe that after 1 day, the two are equal. If the growth rate of N_2 is $k_2 = 2$ per day, find k_1. (c) When will N_2 be 100 times larger than N_1?

Solution

$$\frac{dN_1}{dt} = k_1 N_1, \quad \frac{dN_2}{dt} = k_2 N_2, \quad N_1(0) = 100, N_2(0) = 40.$$
So, the populations obey
\[N_1(t) = 100e^{k_1t}, \quad N_2(t) = 40e^{k_2t}. \]
At \(t = 1 \) day these are equal, so
\[100e^{k_1} = 40e^{k_2} \quad \Rightarrow \quad e^{k_1} = 0.4e^{k_2} = 0.4e^{2-1} = 0.4. \]
Take logarithms of both sides
\[\ln(e^{k_1}) = \ln(0.4e^{2-1}) \quad \Rightarrow \quad k_1 = \ln(0.4) + 2\ln(e) = \ln(0.4) + 2 = 1.084. \]
Hence the growth rate of the first species is \(k_1 = 1.084 \) per day.
(c) \(N_2 \) will be 100 times \(N_1 \) when
\[N_2 = 100N_1 \quad \Rightarrow \quad 40e^{k_2t} = 100(100e^{k_1t}) \]
We know \(k_1, k_2 \) and must solve for \(t \):
\[e^{k_2t} = 250(e^{k_1t}) \quad \Rightarrow \quad e^{k_2t-k_1t} = 250 \quad \Rightarrow \quad (k_2 - k_1)t \]
Hence, after substituting in the values of the rate constants, we get
\[t = \frac{\ln(250)}{(k_2 - k_1)} = \frac{\ln(250)}{(2 - 1.084)} = 6.027. \]
It will take 6 days until the 2nd species is 100 times larger.

3. Find critical points and inflection points for \(y = f(x) = x^3e^{-kx} \).

4. (Review) Consider the E coli cell described in the midterm question Q10. Suppose that the radius and height of the cell are increasing at a constant rate \(k \). Find the rate of change of the volume \(V \) and the surface area \(S \) of the cell.

\textbf{Solution} The volume of the cell is the sum of the cylindrical and spherical parts. The radius of both the cylinder and the sphere is \(r \) and the height of the cylinder is \(h \), so
\[V = \pi r^2h + \frac{4}{3}\pi r^2. \]
The rate of increase of the volume is then
\[\frac{dV}{dt} = \frac{d}{dt} \left(\pi r(t)^2h(t) + \frac{4}{3}\pi r(t)^3 \right). \]
Using the product and chain rules we get

\[
\frac{dV}{dt} = \left(\pi [2r(t)r'(t)h(t) + r(t)^2h'(t)] + \frac{4}{3} \cdot 3\pi r(t)^2r'(t) \right).
\]

Both the radius and the height increase at a constant rate, \(k \) so that

\[r'(t) = k, \quad h'(t) = k. \]

Hence

\[
\frac{dV}{dt} = \left(\pi [2rk + r^2k] + 4\pi r^2k \right).
\]

This can get simplified to

\[
\frac{dV}{dt} = \pi \left(2rk + 5r^2k \right) = \pi rk \left(2h + 5r \right).
\]