Notes based on paper by Flyvbjerg et al PNAS (19y0)
Leah Keshet

Kinetics of Self assembly of fibril - Intro

Given some observations about a chemical reaction's product formation, can we deduce something about the underlying mechanism?
"Reverse Engineering"

Flyvbjerg et a((1996) analyzed microtubule polymerization kinetics, by following the turbidity $A(t)$ of a mixture (which repents the toto l mass $M(t)$ in polymer form).

They found curves of the form for various initial monomer conc
 they arbitrarily chose t such that

$$
A\left(t_{0}\right)=A_{\infty} / 10 \quad(\text { see Figure. })
$$

The data showed a particularly convenient SCALING PROPER.
A plot of $\frac{A(t)}{A \infty}$ vs $\frac{t}{t_{0}}$ led to one MASTER cURVE
ie. data collapses onto one curve.
Estoper

$$
\log \text { to }=\gamma \operatorname{cog} 1 / A_{\infty}
$$

T1/Aio Using this fact, and the property that

(seen by $\log \log$ plots)
they were able to figure out DETARLS of the underlying mechanism A great example of the utility of scaling and dimensional arguments)

rigure 4: Generic nucleation dependent model, the basic model that describes the nucleat rolymerization of a self assembling polymer. Monomers are assumed to quickly associa nd dissociate to form short lived oligomeric species, we will denote as oligomers. The ligomers are assumed to quickly come into steady state with the monomer populatic itable nuclei are then formed on a slower time scale and quickly elongate to form polyme:

Kinetrs of self -assembly of polymer fibrils.
Flyvbjurg. Jobs, Lei sher (1996) Jonas Bailey

PNAS 93: 59755979.

Scaling law:

$$
\begin{gathered}
A\left(t, A_{\infty}\right)=A_{\infty} f\left(\frac{t}{t_{0}\left(A_{\infty}\right)}\right) \\
t_{0} \propto A_{\infty}^{-\gamma}
\end{gathered}
$$

$C_{0}=C(0)=$ monomer conc at $t=0$
$p_{i}(t)=$ cone of i-mar " time t
$n_{i}=$ number of monomers needed for

$c(t)=$ monomer conc at time t

Basic events:

$$
p_{i-1}+n_{i,} \text { man } \frac{f_{i-1}}{b_{i}} p_{i}+n_{i} \text { Monomers } \underset{j_{i} d i}{\stackrel{f_{i}}{b_{i+1}} p_{i+1}+\cdots d_{i+1}}+
$$

$\left.\begin{array}{l}f_{i} \\ b_{i}\end{array}\right\}$ fowanterard reaction. kinetics $d i=$ disassembly rate盟 $\rightarrow:$:

Assumption (1) Basic Mass-action kinetics apply. There is successive addition /loss of mit. but no breakage into 2 ar more

$$
\left\{\begin{array}{cc}
\frac{d p_{1}}{d t}= \\
\frac{d p_{2}}{d t}= \\
\vdots \\
\frac{d p_{i}}{d t} \cdot & \text { Put your equations here } \\
\end{array}\right.
$$ large subunits.

We refer to all complexes up to $\sin ^{2 \pi} k$ as "olisomars".

Staple nuclei:
$V(t)=$ conc of nuclei lin ferias of monomer equivalents)
A (2) There are k "nucleation steps" in which olijomers form and grow Assumption: the first stable nucleus forms by growth of the k 'th oligomar. (3) A stable nucleus has negligible disassembly rate.

$$
\Rightarrow \quad \frac{d د}{d t}=f_{k} c^{n_{k}} \rho_{k}
$$

-ssumption (4): Let $M=$ mass in fibular form (monomer equivalents)
After a nucleus forms, it elongates by single monomer add timon, and does not disassemble nor break
$\Rightarrow \frac{d M}{d t}=f_{k+1} \subset v \quad \Rightarrow M$ keeps growing as long as monomer

Assumption (5): Oligomers/nuck: form slowly, but fibrils grow rapidly so The amt of mass in oligomer form is small compared to mass in polymer form

$$
\Rightarrow \quad c+M \approx c(0)=\text { monomer conc at time } 0
$$

$$
M \approx C(0)-C
$$

By (4 and 5) as $t \rightarrow \infty \quad M \rightarrow C(0), C \rightarrow 0$

$$
\begin{aligned}
& \text { ie } \quad \text { Let } M_{\infty}=C(0)=C \\
& \frac{M}{M_{\infty}}=\frac{C(0)-C}{M_{\infty}}=\frac{C(0)}{C(0)}-\frac{C}{C(0)}=1-\frac{C}{C(0}
\end{aligned}
$$

 is proportional to the polymer mass ie.

$$
\frac{A(t)}{A_{\infty}}=\frac{M(t)}{M_{\infty}}
$$

(this assumes that the olijomers and nuclei have negligible contribution to turbidity)
$\Rightarrow B_{y}(6)$ and previous result $\frac{A(t)}{A_{\infty}}=1-\frac{C}{C(0)}$

Exercises for Unit on kinetics of self-assembly of polymer fibrils.
(1) Use the assumptions to formulate a set of $D D E$'s for the concentrations of oligomers $p_{2}, p_{3}, \ldots p_{k}, \ldots$ nuclei 2 , and mass in polymer form. Assume at each step that $n_{1}, n_{t}, n_{2} \ldots n_{R-1}$ monomers add to form the next (oligoner) Complex.
(2) Given that mass in oligomers and nuclei is much smaller than mass in monomers and fibnts, ie that $C(t)+M(t) \approx C(0)$, argue that $\quad \frac{A(t)}{A_{\infty}} \simeq 1-\frac{C(t)}{C(0)}$ where A is the experimentally measured variable that represents fibril level. (Assume $\frac{A(t)}{A_{\infty}}=\frac{M(t)}{M \infty}$)
(3) A Rewrite your equs from (1) in dimensionless form using the rescaling : $t=t_{0} \hat{t}, c=c_{0} \hat{c}, p_{i}=x \hat{p}_{i}, \nu=\mu \hat{J}, M=c_{0} \hat{M}$ (where \wedge denotes dimensionless variables).
(4) Now use the fact that data salas as $t_{0} \propto C_{0}^{-\gamma}$, ir.

$$
t_{0}=\frac{\lambda}{C_{0}^{\gamma}}
$$

(and that this scaling makes the behaviour independent of C_{0}) to identify appropriate choices for $X, \mu, n_{0}, n_{1}, \ldots$ etc. Explain the what happens to the rates $b_{1}, b_{2}, \ldots, d_{1}, d_{2}, \ldots$ and what this implies.
(5) Write down the (scaled) equations for $\hat{p}_{1}, \hat{p}_{2}, \ldots \hat{p}_{k}, \hat{v}, \hat{m}$
(6) Based on (4), how many monomers are needed to make the first oligom? How many ($n y$) to then make the and, aid digomer?
How many monomers docs if take to make the first stable nucleus?
7) Close to the start of the experiment, $c(t) \approx c(0)=c_{0} \Rightarrow$

$$
\hat{c}(t) \approx \frac{c(t)}{c_{0}} \approx 1
$$

Use this to simplify the equs and solve them one by one. show that

$$
\begin{aligned}
& c_{1}(t) \sim f_{0} t \\
& c_{2}(t) \sim \frac{1}{2} f_{1} f_{0} t^{2} \\
& \vdots \\
& c_{k}(t) \sim \quad t^{k}
\end{aligned}
$$

And that

$$
M(t) \sim \quad t^{k+2}
$$

Thereby establish that $\log \left(\frac{A(t)}{A \infty}\right)=(k+2) \log t+$ constant.
8) An attached excel file contains simulated 'turbidity data' for self-assembly of amyloid fibrils form three different monomer concentrations $c(0)=1.0, \quad c(0)=2.0$, and $c(0)=3.0$. Use the data as follows:
(a) Identify A_{∞} and t_{0} for each set.
(b) Plot $A(t)$ vas for the ${ }_{n}^{3}$ series on one plot
(c) Plot $\log \left(A / A_{\infty}\right) v, \log (t) \quad$ " . . $"$

Use the early few data points to determine the number of distinct olijomeric species
(d) Plot $\log \left(A_{\infty}\right)$ vs $\log \left(t_{0}\right)$. What do the slopes of these lines indicate?
(e) Plot A / A_{∞}. VS $t t_{\text {to }}$ to show that the data collapses.
(f) Use the data to determine the full assembly scheme and shutching

