SCIENCE ONE, MATHEMATICS - HOMEWORK \#3

Due 10AM, Friday, Oct. 31

Problem 1. In class we found the derivative of $\tan ^{-1}(x)$. Let $\cot ^{-1}(x)$ be the inverse function of $\cot (x)=\cos (x) / \sin (x)$, where we choose the branch $0<\cot ^{-1}(x)<\pi$.
(a)Find the derivative of $\cot ^{-1}(x)$.
(b)Prove that

$$
\tan ^{-1}(x)+\cot ^{-1}(x)=\frac{\pi}{2}
$$

(Hint: show that the derivative of the left hand side is zero.)
Problem 2. Prove that if

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0
$$

then the polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has a root x in the interval $(0,1)$. (Hint: apply the mean value theorem to a function with derivative $p(x)$.)

Problem 3. The goal of this problem is to prove that for any integer $n>0$ and any real number $x \geq-1$,

$$
(1+x)^{n} \geq 1+n x .
$$

Using the binomial theorem, we can express

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\cdots+x^{n}=1+n x+(\ldots) .
$$

When $x \geq 0$, then the terms (...) are all non-negative, hence we have the inequality (\diamond).
Prove the inequality (\diamond) for $-1 \leq x<0$ by applying the mean value theorem to the function $(1+x)^{n}$ in the interval $[x, 0]$.

Problem 4. The generalized mean value theorem states that if $f(x), g(x)$ are continuous in $[a, b]$ and differentiable in (a, b), then there exists a number c in (a, b), such that

$$
[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)
$$

(a) Show that if $g(x)=x$, then the generalized mean value theorem reduced to the ordinary mean value theorem.
(b)Prove the generalized mean value theorem by applying the ordinary mean value theorem to the function

$$
h(x)=[g(b)-g(a)] f(x)-[f(b)-f(a)] g(x) .
$$

(c)At the 2009 World Championships Usain Bolt ran 10 seconds with average velocity $10.438 \mathrm{~m} / \mathrm{s}$. At the same time Tyson Gay ran 10 seconds with average velocity $10.299 \mathrm{~m} / \mathrm{s}$. Prove that at some time t in $(0,10)$, the velocity of Usain Bolt was exactly 10.438/10.299 times the velocity of Tyson Gay.

