SCIENCE ONE, MATHEMATICS - HOMEWORK \#2

Due 10AM, Friday, Oct. 17

Problem 1. If f is a differentiable function and $g(x)=x^{2} f(x)$, use the definition of derivative as a limit to show that $g^{\prime}(x)=x^{2} f^{\prime}(x)+2 x f(x)$.

Problem 2. Show that if $b>1 / 2$, there are three straight lines through $(0, b)$, each of which is normal to the curve $y=x^{2}$. How many such lines are there if $b=1 / 2$? If $b<1 / 2$? Explain.

Problem 3. Let $m>0$ and $k>0$ be given constants (m is the mass of a particle attached to a spring that has a Hooke's Law constant K), and consider the problem of finding the displacement $x(t)$ that satisfies the differential equation

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x, \quad 0<t<\infty,
$$

and satisfies at $t=0$ the two initial conditions

$$
x(0)=x_{0}, \quad x^{\prime}(0)=v_{0} .
$$

The solution can be expressed as

$$
x(t)=A \cos \left(\omega t+\phi_{0}\right), 0 \leq t<\infty .
$$

Suppose $m=3 \mathrm{~kg}$ and $k=40 \mathrm{~N} \cdot \mathrm{~m}^{-1}$. Find A, ω and ϕ_{0} (including their units) if the initial position and velocity of the mass is
(a) $x_{0}=3 \mathrm{~m}$, and $v_{0}=1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
(b) $x_{0}=3 \mathrm{~m}$, and $v_{0}=-1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
(c) $x_{0}=-3 \mathrm{~m}$, and $v_{0}=1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
(d) $x_{0}=-3 \mathrm{~m}$, and $v_{0}=-1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Problem 4. Find all strictly positive values of the constant λ such that the boundary value problem

$$
\begin{gathered}
\frac{d^{2} u}{d x^{2}}=-\lambda u, \quad 0<x<\pi \\
u(0)=0, \quad u^{\prime}(\pi)=0
\end{gathered}
$$

has nontrivial solutions, and also give the corresponding solutions $u(x)$.

