Problem 1. Ex. 1 on page 50. (Use orbit closures $V(\sigma)$ and their images under maps. For example, to every 2-dimensional cone $\tau \in \Delta$ there corresponds a curve $V(\tau) \subset \mathbb{P}^3$. The strict transform of this curve is $V(\tau) \subset X(\Delta)$. The intersection of $V(\tau_1)$ and $V(\tau_2)$ is $V(\sigma)$, where σ is the smallest cone containing τ_1 and τ_2.)

Problem 2. Ex. 1 on page 61.

Problem 3. Ex. 2 on page 61.

Problem 4. Ex. 1 on page 62. In addition, show that D_τ is linearly equivalent to a sum $\sum a_i D_{\tau_i}$ that does not contain D_τ.

Problem 5. Ex. 3 on page 62.

Problem 6. Ex. 2 on page 64.

Problem 7. Ex. 1 on page 65.

Problem 8. Ex. 3 on page 65.