MATH 532 - HOMEWORK #5

Due Tuesday, Nov. 26

Some problems below ask about irreducibility and dimension of a variety. You can use the following results, some of which we have not proved:

1. We will consider the dimension of an irreducible variety. Both \mathbb{A}^n and \mathbb{P}^n have dimension n.
2. Let $f : Y \rightarrow X$ be a morphism of projective varieties. If Y is irreducible then both X and the general fibre of f are irreducible. The dimension of Y is the dimension of X plus the dimension of the general fibre. (Some fibres may be reducible and have higher dimension than the general fibre. This happens for example in case of a blowup map.)
3. Conversely, if $f : Y \rightarrow X$ is a surjective morphism as above and if X and all fibres of f are irreducible, the Y is also irreducible.

Recall that the Grassmannian $Gr(m, n)$ is the set of m-dimensional subspaces of k^n. We can also view it as $G(m − 1, n − 1)$, the set of $m − 1$ planes in $\mathbb{P}^{n−1}$. The Plücker morphism

$$Gr(m, n) \rightarrow \mathbb{P}(\Lambda^m k^n)$$

$$\text{Span}\{w_1, \ldots, w_m\} \mapsto w_1 \wedge \ldots \wedge w_m.$$

embeds $Gr(m, n)$ in $\mathbb{P}^{\binom{n}{m}}$ as a closed subvariety. The Grassmannian $Gr(2, 4) = G(1, 3)$ is embedded in \mathbb{P}^{5} as a degree 2 hypersurface defined by the Plücker relation $Z_{1,2}Z_{3,4} − Z_{1,3}Z_{2,4} + Z_{1,4}Z_{2,3} = 0$.

Problem 1. Let $G = G(1, 3)$ be the Grassmannian of lines in \mathbb{P}^3. For a point $p \in \mathbb{P}^3$, define $X_p \subset G$ as the case of lines through p.

(a) Prove that X_p maps to a 2-plane in G by the Plücker embedding. (Hint: it does not matter which point p you take. You can fix one specific p, for example $p = (1 : 0 : 0 : 0)$ and find X_p.)

(b) Prove that $X_p \cap X_q$ is a point if $p \neq q$. In particular, $X_p \neq X_q$.

(c) Prove that the planes X_p cover G.

Problem 2. Let $G = G(1, 3)$ be as before. For a 2-plane $W \in \mathbb{P}^3$, define $X_W \subset G$ as the set of lines through W.

(a) Prove that X_W maps to a 2-plane in G by the Plücker embedding. (You may again fix one specific plane.)

(b) Prove that $X_W \cap X_V$ is a point if $V \neq W$.

(c) Prove that the planes X_W cover G.

(d) Prove that $X_W \cap X_p$ is either empty or a line. In particular, $X_W \neq X_p$.

Problem 3. Let $X \subset \mathbb{P}^n$ be an irreducible projective variety.

(a) Define the incidence variety

$$I_m(X) = \{ W \in \mathbb{G}(m, n) | W \cap X \neq \emptyset \}.$$

Prove that $I_m(X)$ is a closed and irreducible subset of $\mathbb{G}(m, n)$. (Hint: Use the universal m-plane.)

(b) Define the the Fano variety of X

$$F_m(X) = \{ W \in \mathbb{G}(m, n) | W \subset X \}.$$
Prove that $F_m(X)$ is a closed subset of $G(m,n)$. Find an example where it is reducible.

Problem 4. Let $X, Y \subset \mathbb{P}^n$ be irreducible projective varieties, $X \cap Y = \emptyset$. Define their join $J(X,Y)$ as the union of all lines intersecting both X and Y.

(a) Prove that $J(X,Y)$ is closed in \mathbb{P}^n.
(b) Prove that $J(X,Y)$ is irreducible.
(c) Fix X and Y to be your favourite two skew lines in \mathbb{P}^4 and find an equation defining their join.

Problem 5. Let $X \subset \mathbb{P}^n$ be a hypersurface of degree d. Consider the Fano variety of lines in X:

$$F(X) = \{[L] \in G(1,n) | L \subset X\}.$$

The problem here is to find the dimension of $F(X)$ for a general hypersurface X. Let $\Pi = \mathbb{P}^N$ be the parameter space of all degree d hypersurfaces in \mathbb{P}^n. (Recall that Π is the projectivization of the space of degree d homogeneous polynomials in X_0, \ldots, X_n. Here $N = \binom{n+d}{n} - 1$.) Let

$$I = \{([L],[X]) \in G(1,n) \times \Pi | L \subset X\}.$$

You may assume that $I \subset G(1,n) \times \Pi$ is a closed subset.

(1) Prove that I is irreducible and find its dimension. (Hint: consider the fibres of the projection $I \to G(1,n)$.)

(2) Assuming that $F(X) \neq \emptyset$ for any $[X] \in \Pi$, find the dimension of $F(X)$ for general X.

(3) For each n, find the smallest D such that a general hypersurface X of degree $d > D$ contains no line. What can you say about the number of lines on a general hypersurface of degree D? (Is it infinite/finite? Can it be zero?)