MATH 532 - HOMEWORK #4

Solutions

Problem 1. Let \(X = Z(y^2 - g(x)) \subset \mathbb{A}^2 \) where \(g(x) \) is a polynomial of degree 3, and let \(\pi : (x,y) \mapsto x \) be the projection. The projective closure \(\overline{X} \subset \mathbb{P}^2 \) is defined by the homogenization of the polynomial \(y^2 - g(x) \). (Set \(x = X_1/X_0, \ y = X_2/X_0 \) and clear denominators in the rational function.)

1. Find all points at infinity \(\overline{X} \setminus X \) and show that \(\pi \) extends to a regular map \(\overline{\pi} : \overline{X} \to \mathbb{P}^1 \). (Hint: the map is \(\overline{\pi} : (X_0 : X_1 : X_2) \mapsto (X_0 : X_1) \). You can change the right hand side to \((X_0X_1^2 : X_1^3) \) and simplify.)

2. Repeat the previous part with \(X = Z(y^3 - g(x)) \), with \(g(x) \) as before.

(a) When we homogenize the polynomial \(y^2 - g(x) \), assuming \(g \) is monic, we get \(X_2^2X_0 - X_1^3 + X_0(...) \). The only point at infinity \(X_0 = 0 \) is \((0 : 0 : 1) \). We can change the map to \((X_0 : X_1) = (X_0X_1^2 : X_1^3) = (X_0X_1^2 : X_2^2X_0 - X_0(...)) = (X_1^2 : X_2^2 - h(X_0, X_1)) \).

This map takes \((0 : 0 : 1) \) to \((0 : 1) \).

(b) The homogeneous equation now is \(X_2^3 - X_1^3 + X_0h(X_0, X_1) \). There are now three points at infinity, the three solutions to \(X_2^3 - X_1^3 \). They all have \(X_1 \neq 0 \), hence they are all mapped to \((0 : 1) \).

Problem 2. Consider the twisted cubic \(C = \{(t,t^2,t^3) | t \in k \} \subset \mathbb{A}^3 \).

Its closure \(\overline{C} \subset \mathbb{P}^3 \) is the image of the Veronese map \(v_3 : \mathbb{P}^1 \to \mathbb{P}^3 \).

(a) The curve \(C \) can be defined by equations \(y = x^2, z = x^3 \). Prove that the homogenizations of these equations do not define the closure \(\overline{C} \). Find another equation \(E \) for \(C \), so that the homogenizations of \(E \) and the other two equations define \(\overline{C} \).

(b) Show that \(C = V(y-x^2, z^2-2xyz+y^3) \) and \(\overline{C} \) is defined by the homogenizations of the two polynomials, but the ideal in \(k[X_0, X_1, X_2, X_3] \) generated by the two homogenized polynomials is not radical.

(c) Consider the Segre embedding \(\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3 \), defined by \(Z_{01}Z_{10} = Z_{00}Z_{11} \). Prove that \(\overline{C} \) lies on \(\mathbb{P}^1 \times \mathbb{P}^1 \) (with the correct choice of coordinates) and it can be defined by one bi-homogeneous polynomial. Determine the bi-degree of this polynomial.

(a) The homogenizations of the two equations are \(X_0X_2 = X_1^2 \) and \(X_0^2X_3 = X_1^3 \). The line \(X_0 = X_1 = 0 \) satisfies these equations. The homogenization of \(y^3 = z^2 \) is \(X_2^3 = X_0X_3^2 \). The only point on the line \(X_0 = X_1 = 0 \) where this equation is satisfied is \((0 : 0 : 1) \). This point lies on \(\overline{C} \).

(b) When we substitute \(y = x^2 \) into the second polynomial, we get \((z-x^3)^2\). Thus, the two polynomials vanish precisely on the curve \(C \). The homogenizations of the polynomials are \(X_0X_0 - X_1^2, X_3^2X_0 - 2X_1X_2X_3 + X_2^3 \). We need to check that these don’t vanish at any extra points at infinity. When \(X_0 = 0 \), then also \(X_1 = X_2 = 0 \). The point \((0 : 0 : 0 : 1) \) lies on \(\overline{C} \).
The polynomial $z - x^3$ vanishes on C, hence its homogenization $X_3X_0^3 - X_1^3$ vanishes on C. However, it does not lie in the ideal generated by the two polynomials.

(c) The Segre embedding restricted to the affine open $A^1 \times A^1$ is
\[((1 : x), (1 : y)) \mapsto (1 : x : y : xy). \]
If we compose this with the map $\phi : A^1 \to A^1 \times A^1$,
\[t \mapsto ((1 : t), (1 : t^2)) \]
then the image will be the twisted cubic.

The image of ϕ is defined by the equation $x^2 = y$. With homogeneous coordinates $x = X_1/X_0$ and $y = Y_1/Y_0$, the equation is $X_1^2Y_0 = X_0^2Y_1$. This is an equation of bidegree $(2, 1)$.

PROBLEM 3. Consider the Segre map $s_{1,2} : P^1 \times P^2 \to P^5$. The image of the map is the variety
\[X = \{(Z_0 : \ldots : Z_5) \in P^5 | \text{rank} \begin{pmatrix} Z_0 & Z_1 & Z_2 \\ Z_3 & Z_4 & Z_5 \end{pmatrix} \leq 1 \}. \]

(a) Describe the second projection $\pi_2 : P^1 \times P^2 \to P^2$ in the coordinates Z_i. Show that it is regular everywhere.
(b) Prove that the twisted cubic $C \subset P^5$ is isomorphic to the intersection of X with a linear 3-plane $P^3 \subset P^5$.

(a) The Segre map is
\[(X_0 : X_1), (Y_0, Y_1, Y_2) \mapsto (Z_0 : Z_1 : \ldots : Z_5) = (X_0Y_0 : X_0Y_1 : X_1Y_2 : X_1Y_0 : X_0Y_1 : X_1Y_2). \]

The projection map is given by $(Z_0 : Z_1 : Z_2)$ or equivalently by $(Z_3 : Z_4 : Z_5)$.
These vectors don’t vanish simultaneously.

(b) The twisted cubic is the closure of the set
\[\begin{pmatrix} 1 & t & t^2 \\ t & t^2 & t^3 \end{pmatrix}. \]
This set lies in X and it is defined by linear equations $Z_3 = Z_1$ and $Z_4 = Z_2$.

PROBLEM 4. Given m points in P^n, we can consider the m-tuple as a point in $P^n \times P^n \times \cdots \times P^n$. Generalizing the Segre embedding, we can map this product into $P^{(n+1)^m-1}$:
\[((X_0 : \ldots : X_n), (Y_0 : \ldots : Y_n), \ldots, (Z_0 : \ldots : Z_n)) \mapsto (X_0Y_0 \cdots Z_0 : \ldots : X_iY_j \cdots Z_l : \ldots : X_nY_n \cdots Z_n). \]

(a) Consider 3 points in P^2. Prove that the locus of three collinear points (lying on a line) is closed in $(P^2)^3$ by showing that this locus is the intersection of $(P^2)^3$ with a hyperplane in P^{26}.
(b) Repeat the previous part with 4 collinear points in P^2.

(a) Collinearity of three points is defined by the vanishing of the 3×3 determinant.
This is an equation of tri-degree $(1, 1, 1)$, hence it is given by one linear equation in P^{26}.
(b) We can put the coordinates of the 4 points in a 3×4 matrix. Then all 4 minors of this matrix must vanish. Each minor corresponds to a linear equation.
Problem 5. Let \(X \subset \mathbb{P}^n \) be a projective variety, not equal to a finite set of points. We proved in class that the only regular functions on \(X \) are constant functions.

(a) Let \(H \subset \mathbb{P}^n \) be a hyperplane, \(H = V(F) \), where \(F \) is linear. Prove that \(X \cap H \neq \emptyset \).

(b) Let \(H \subset \mathbb{P}^n \) be a hypersurface, \(H = V(F) \), where \(\deg F = d > 0 \). Prove that \(X \cap H \neq \emptyset \). (Hint: use the Veronese embedding of \(\mathbb{P}^n \).)

(c) Prove that any two curves in \(\mathbb{P}^2 \) intersect. A curve in \(\mathbb{P}^2 \) is a hypersurface \(V(F) \).

(a) If \(H = V(f) \) then \(g/f \) with \(g \) and \(f \) both linear would be regular on \(X \). We can choose \(g \) to vanish at some point of \(X \) and not at another, hence \(g/f \) is not a constant function.

(b) The same argument as in the previous part works with \(f, g \) of any degree.

(c) Clear from the previous part.

Problem 6. A plane cubic curve is \(C = V(f) \subset \mathbb{P}^2 \), where \(f \) is a degree 3 homogeneous polynomial. Note that \(f \) and \(cf \) for \(c \neq 0 \) define the same curve. Let \(W = k[X_0, X_1, X_2]_3 \) be the vector space of homogeneous degree 3 polynomials (and 0). Let \(\mathbb{P}(W) \) be the set of lines in \(W \), which we identify with the set of plane cubics. Choosing the 10 degree 3 monomials as a basis, we have \(W \cong k^{10} \) and \(\mathbb{P}(W) \cong \mathbb{P}^9 \).

Define the incidence variety

\[
Y = \{(P, C) \in \mathbb{P}^2 \times \mathbb{P}(W) | P \in C\},
\]

and let \(\pi_1, \pi_2 \) be the two projections from \(Y \) to \(\mathbb{P}^2 \) and \(\mathbb{P}(W) \).

(a) Describe the fibres of \(\pi_1 \) and \(\pi_2 \). Prove that

\[
\pi_1^{-1}(P) = \mathbb{P}(W_P)
\]

for some linear subspace \(W_P \subset W \) of codimension 1.

(b) Prove that, given any 9 points \(P_1, \ldots, P_9 \in \mathbb{P}^2 \), there exists a cubic through them.

(a) The fibre of \(\pi_2 \) over \(C \) is the curve \(C \). The fibre of \(\pi_1 \) over a point \(P \) is the set of all cubics passing through \(P \). This is a linear hyperplane in \(\mathbb{P}(W) \).

(b) Nine hyperplanes in \(k^{10} \) always have a non-zero intersection. This means that nine hyperplanes in \(\mathbb{P}(W) \) intersect at some point. This intersection point is a cubic curve passing through all nine points.