In algebraic geometry we often work over a base S. This means that we consider a (pre-)variety X together with a morphism $f : X \to S$. A morphism f can be thought of as a family of varieties. For each point $s \in S$ there is the fibre $f^{-1}(s)$ and these fibres vary algebraically.

This homework contains problems that generalize notions such as product, separated, complete from varieties to varieties over a base. Most problems here can be done abstractly using the universal properties.

Let C be a category, for example the category of sets, topological spaces, prevarieties, varieties. Let $f : X \to S$ and $g : Y \to S$ be morphisms in the category. The fibre product of X and Y over S is an object denoted $X \times_S Y$ with two morphisms π_1, π_2 to X and Y, respectively, such that $f \circ \pi_1 = g \circ \pi_2$:

$$
\begin{array}{ccc}
X \times_S Y & \xrightarrow{\pi_2} & Y \\
\pi_1 \downarrow & & \downarrow g \\
X & \xrightarrow{f} & S.
\end{array}
$$

The fibre product must satisfy the universal property: Given any object Z and morphisms $p_1 : Z \to X$ and $p_2 : Z \to Y$ such that $f \circ p_1 = g \circ p_2$, there exists a unique morphism $\phi : Z \to X \times_S Y$ such that $p_1 = \pi_1 \circ \phi$ and $p_2 = \pi_2 \circ \phi$. (Another way to state the universal property is that to give a morphism $Z \to X \times_S Y$ is the same as to give two morphisms p_1 and p_2, such that $f \circ p_1 = g \circ p_2$.) A fibre product is unique up to isomorphism if it exists.

Problem 1. Let $f : X \to S$ and $g : Y \to S$ be maps in the category of sets. The fibre product of sets exists and it is $X \times_S Y = \{(x, y) \in X \times Y | f(x) = g(y)\}$.

Describe in more common terms (such as union, intersection, fibre, inverse image, product, etc) and without proof the fibre products in the following cases:

(a) S is a one point set.
(b) X is a one point set.
(c) f is an inclusion.
(d) Both f and g be inclusions.

(a) product $X \times Y$.
(b) Fibre $g^{-1}(f(P))$.
(c) Inverse image $g^{-1}(X)$.
(d) Intersection $X \cap Y$.

Problem 2. Fibre products exist in the category of prevarieties. This problem proves it when S is a variety. Let $f : X \to S$ and $g : Y \to S$ be morphisms of prevarieties. Assume S is a variety.

(a) Show that the fibre product of sets $X \times_S Y$ is a Zariski closed subset of $X \times Y$, hence a sub-prevariety. (Hint: consider the morphism $X \times Y \to S \times S$.)

(b) Prove that the prevariety $X \times_S Y$ constructed above satisfies the universal property. (Use the universal property of the product. Note that a morphism
to a sub-prevariety is the same as a morphism to the ambient prevariety with image in the sub-prevariety.)
(c) Let \(X \rightarrow T \rightarrow S \) and \(Y \rightarrow S \) be morphisms. Prove that
\[
X \times_T (T \times_S Y) \cong X \times_S Y.
\]
(Hint: Show that the left hand side satisfies the universal property of \(X \times_S Y \).)

(a) The fibre product is the inverse image of the diagonal \(\Delta \) by the map \(X \times Y \rightarrow S \times S \). The diagonal is closed if \(S \) is separated.
(b) Given \(p_1 : Z \rightarrow X \) and \(p_2 : Z \rightarrow Y \) such that \(f \circ p_1 = g \circ p_2 \), there exists a unique morphism to \(X \times Y \) from the universal property of the product. We need to check that this morphism maps to the closed subvariety \(X \times_S Y \). This can be checked for every point \(z \in Z \).
(c) Let us check that the left hand side satisfies the universal property of \(X \times_S Y \).

Let \(p_1 : Z \rightarrow X \) and \(p_2 : Z \rightarrow Y \) such that \(f \circ p_1 = g \circ p_2 \). First we use the universal property of \(T \times_S Y \) applied to the morphisms \(Z \rightarrow X \rightarrow T \) and \(Z \rightarrow Y \) to get a unique morphism \(Z \rightarrow T \times_S Y \). Then we use the universal property of \(X \times_T (T \times_S Y) \) applied to this morphism and \(Z \rightarrow X \) to get a unique morphism \(Z \rightarrow X \times_T (T \times_S Y) \). One can easily check at each step that the appropriate compositions are equal.

A morphism \(\psi : X \rightarrow S \) of prevarieties is called \emph{separated} if, given any two morphisms \(f, g : Z \rightarrow X \), such that \(\psi \circ f = \psi \circ g \), the set
\[
Eq(f, g) = \{ z \in Z | f(z) = g(z) \}
\]
is closed in \(Z \). Notice that a prevariety \(X \) is separated if the map \(X \rightarrow \{ \text{pt} \} \) is separated.

Problem 3. Give short proofs of the following:
(a) Let \(X \) be the line with doubled origin and \(\psi : X \rightarrow \mathbb{A}^1 \) the map that is the identity on each of the two affine pieces of \(X \). Then \(\psi \) is not separated.
(b) If \(X \) is separated, then any morphism \(X \rightarrow S \) is separated.
(c) \(X \rightarrow S \) is separated if and only if the diagonal \(\Delta \subseteq X \times_S X \) is closed.
(d) Let \(Z \subset X \) be a sub-prevariety (open or closed). Then the inclusion map \(Z \rightarrow X \) is separated.
(e) The composition \(X \rightarrow Y \rightarrow Z \) of separated morphisms is separated.
(f) If \(\psi \circ \phi \) is separated, so is \(\phi \). (Note that (2) is a special case of this.)
(g) If \(X \rightarrow S \) is separated and \(Y \rightarrow S \) any morphism, then \(X \times_S Y \rightarrow Y \) is also separated. (Hint: use the universal property of fibre products to describe maps to \(X \times_S Y \).)

(a) Let \(f, g : \mathbb{A}^1 \rightarrow X \) be the inclusions of the two affine pieces. Then \(\psi \circ f = \psi \circ g \) and \(Eq(f, g) = \mathbb{A}^1 \setminus \{0\} \).
(b) The condition for a morphism to be separated is weaker than the condition that \(X \) is separated. For the morphism we don’t need to consider all pairs of morphisms, only those that compose to the same morphism to \(S \).
(c) The locus \(Eq(f, g) \) is the inverse image of the diagonal by the map \(Z \rightarrow X \times_S X \). If the diagonal is closed, then so is its inverse image. Conversely, if the diagonal is not closed, then the two projections \(f, g : Z = X \times_S X \rightarrow X \) have \(Eq(f, g) = \Delta \) that is not closed.
(d) If for two morphisms \(f, g : W \to Z \) their compositions with \(Z \to X \) are equal, then \(f \) and \(g \) are equal, hence \(Eq(f, g) = W \).

(e) Let \(f, g : W \to X \) be two morphisms that compose to the same morphism to \(Z \). Then using that \(Y \to Z \) is separated, there is a closed subset \(V \subset W \) where \(f \) and \(g \) compose to the same morphism to \(Y \). Now separatedness of \(X \to Y \) gives a closed subset of \(V \) on which \(f \) and \(g \) agree.

(f) If \(f \) and \(g \) become equal after composing with \(\phi \), then they stay equal after further composing with \(\psi \). This means that separatedness of \(\psi \circ \phi \) is a stronger condition as we need to consider more pairs of morphisms.

(g) A morphism to \(f : Z \to X \times_S Y \) is the same as a morphism to \(f_1 : Z \to X \) and a morphism to \(f_2 : Z \to Y \) that compose to the same morphism to \(S \). Given two such morphisms, \(f \) and \(g \) such that \(f_2 = g_2 \),

\[
Eq(f, g) = Eq(f_1, g_1).
\]

The right hand side is closed by separatedness of \(X \to S \). (Note that \(f_1 \) and \(g_1 \) compose to the same map to \(S \), which is the same map as the composition of \(f_2 = g_2 \) with \(Y \to S \).)

A morphism \(\psi : X \to S \) of prevarieties is called proper if it is separated and universally closed. This means that, given any \(W \to S \), the projection \(X \times_S W \to W \) is a closed map, taking closed sets to closed sets. Note that \(X \) is complete iff the map \(X \to \{pt\} \) is proper.

Problem 4. Prove:

(a) Let \(Z \subset X \) be a closed sub-prevariety. Then the inclusion map \(Z \to X \) is proper.

(b) If \(X \) is complete and \(S \) is separated, then any morphism \(X \to S \) is proper.
 (Hint: \(X \times_S W \) is a closed sub-prevariety of \(X \times W \).)

(c) The composition \(X \to Y \to Z \) of proper morphisms is proper.

(d) If \(X \to S \) is proper and \(Y \to S \) any morphism, then \(X \times_S Y \to Y \) is also proper.

(a) If \(Z \to X \) is the inclusion of a closed subset, then \(W \times_X Z \to W \) is again the inclusion of a closed subset. This map is closed.

(b) The composition \(X \times_S W \to X \times W \to W \) is closed because each map is closed.

(c) Given \(W \to Z \), the morphism \(W \times_Z X \to W \) can be factored as

\[
W \times_Z X \to W \times_Z Y \to W.
\]

These two morphisms are closed by the properness of \(X \to Y \) and \(Y \to Z \).

(d) Given \(W \to Y \),

\[
W \times_Y (X \times_S Y) \simeq W \times_S X.
\]

The map from the right hand side to \(W \) is closed by the properness of \(X \to S \).