Let \(k = \mathbb{C} \) in all problems.

Problem 1. (1) Prove that the four curves in \(\mathbb{A}^2 \):
\[
V(x^2 \pm y^2 \pm 1)
\]
all have affine coordinate rings isomorphic to \(\mathbb{C}[z, z^{-1}] \), hence the curves are isomorphic.

(2) Describe an isomorphism \(f : V(x^2 - y^2 - 1) \to V(x^2 + y^2 + 1) \).

(3) Show that the curves \(V(x - y^2 - 1) \) and \(V(x^2 - 2xy + y^2 - 1) \) are not isomorphic to the curves above or to each other. Find the affine coordinate rings of these two curves.

Problem 2. Let \(X = \mathbb{A}^1 \{a, b, c\} \), where \(a, b, c \) are distinct.

(1) Describe all morphisms from \(X \) to \(\mathbb{A}^1 \). Which ones are injective?

(2) Find \(a, b, c \) such that \(X \) is not isomorphic to \(\mathbb{A}^1 \{0, 1, 2\} \).

Problem 3. Let \(X \subseteq \mathbb{A}^2 \) be the complement of 4 distinct points, no three of which lie on a line. Is it true that any two such \(X \) are isomorphic? Equivalently, is any such \(X \) isomorphic to the complement of \((0,0), (0,1), (1,0), (1,1) \)? (There are many more isomorphisms \(f : \mathbb{A}^2 \to \mathbb{A}^2 \). In addition to linear maps and translations, there are also maps of the form \((x, y) \mapsto (x, y + f(x))\) where \(f(x) \) is nonlinear.)

Problem 4. Consider \(X = \mathbb{C}^x = \mathbb{C} \sim \{0\} \) with the usual metric topology. Let \(L \) be the sheaf of functions on \(X \) such that \(L(U) \) is the set of continuous \(\mathbb{C} \)-valued functions \(f(z) \) on \(U \) satisfying \(\exp(f(z)) = z \). You may assume that this is a sheaf.

(1) Show that this sheaf is locally constant. Every point \(x \in X \) has a neighborhood \(U \) such that \(L(U) \simeq \mathbb{Z} \) as a set.

(2) Show that \(L \) has no global sections, \(L(X) = \emptyset \).

Problem 5. Let \(X \subseteq \mathbb{A}^n \) be a closed subset. Define the sheaf \(I_X \) on \(\mathbb{A}^n \) with sections \(I_X(U) \) those functions on \(U \) that vanish on \(X \cap U \).

(1) Prove that this is a sheaf. (Explain why the sheaf axiom holds.) This is called the ideal sheaf of \(X \).

(2) Let \(X = \{(0,0)\} \subseteq \mathbb{A}^2 \). Find the stalks \(I_{X,x} \) for all points \(x \in \mathbb{A}^2 \). You may describe these stalks in terms of stalks \(O_{\mathbb{A}^2,x} \).