The field k is assumed everywhere to be algebraically closed.

Problem 1. Let $X \subset \mathbb{A}^3$ be the curve $\{(t^3, t^4, t^5) | t \in k\}$. You may assume that X is a closed algebraic set.

(a) The polynomials $xz - y^2, x^4 - y^3$ lie in the ideal (X). Show that $V(xz - y^2, x^4 - y^3) > X$ and describe the other irreducible component(s). (Hint: you can slice \mathbb{A}^3 by setting y equal to a constant and finding the traces of the two closed sets.)

(b) Is $V(xz - y^2, x^5 - z^3) = X$? If not, find the irreducible components.

Problem 2. Consider the ring $R \subset k[x, y]$ consisting of all polynomials $f(x, y)$ that do not contain terms with monomials $y^i, i > 0$. (Another way to define it is as the set of polynomials $f(x, y)$, such that $f(0, y)$ is a constant.) Prove that the maximal ideal \mathfrak{m} consisting of all polynomials with no constant term is not finitely generated. (Hint: consider monomials xy^i for $i \geq 0$. Prove that no finitely generated ideal of R can contain all these monomials.)

Problem 3. Let $f : X \to Y$ be a continuous surjective map of topological spaces. If X is irreducible, prove that Y is also irreducible.

Problem 4. (a) A topological space X is called *quasicompact* if every open cover

$$X = \bigcup_{i \in I} U_i$$

has a finite subcover: there exists a finite subset $\{i_1, \ldots, i_n\} \subset I$, such that

$$X = \bigcup_{j=1}^n U_{i_j}.$$

Prove that \mathbb{A}^n with Zariski topology is quasi-compact.

(b) A *base* for the topology on X is a collection of open sets $\{U_i\}_{i \in I}$, such that every open set $U \subset X$ is a union of some of the U_i. Prove that the distinguished opens

$$U_f = \mathbb{A}^n \setminus Z(f)$$

form a base for the Zariski topology on \mathbb{A}^n.

Problem 5. Let (S, \leq) be a partially ordered set. Define $C \subset S$ to be closed if $s \leq t$ and $s \in C$ imply $t \in C$.

(a) Prove that this defines a topology on S.

(b) Show that a one point set $\{s\} \subset S$ may not be closed, and describe its closure $\overline{\{s\}}$. (The closure of a set is the intersection of all closed sets containing it.)

(c) Prove that $\{s\}$ is irreducible.
Problem 6. Let a group G act on \mathbb{A}^n. A set $C \subset \mathbb{A}^n$ is called G-closed if it is closed in the Zariski topology and G maps C to C.

(a) Prove that this defines a topology on \mathbb{A}^n.

(b) Find an example of such action and a G-closed C such that C is irreducible in the topology defined, but reducible in the Zariski topology.

(c) Let $G = Gal(\mathbb{C}/\mathbb{R})$ that acts on $\mathbb{A}^1_{\mathbb{C}} = \mathbb{C}$. (Recall that the Galois group G is a two element group that acts on \mathbb{C} by complex conjugation.) Prove that there is a bijection between minimal nonempty G-closed sets in $\mathbb{A}^1_{\mathbb{C}}$ and maximal ideals in $\mathbb{R}[x]$.