Please choose 6 problems. All problems are worth the same number of marks.

All varieties are defined over an algebraically closed field k, which you may assume to have characteristic zero. In the last part about schemes the field k is allowed to be arbitrary.

Dimension of fibres and irreducibility.

Problem 1. Let X be an irreducible variety and $f : Y \to X$ a proper surjective morphism. Assume that all fibres of f are irreducible and have the same dimension. Prove that Y is irreducible. (Hint: prove that every component of Y is a union of fibres of f. Then study the images of the components.)

Matrices. Write $G(m,n)$ for the Grassmannian of m-dimensional subspaces of k^n, and $G(m-1, n-1)$ for the same variety of $(m-1)$-planes in \mathbb{P}^{n-1}.

Problem 2. Let M_n be the set of $n \times n$ matrices with entries in k. We identify M_n with A^{n^2}. Let $V_r \subset M_n$ be the set of matrices of rank at most r. Let

$$ I = \{ ([W], A) \in G(m,n) \times M_n | W \subset Ker(A) \}. $$

You may assume that I is a closed subset of $G(m,n) \times M_n$.

(1) Considering the projection to $G(m,n)$, prove that I is irreducible and find its dimension. (The projection map is not proper, but Problem 1 also applies here. We could replace M_n with its projectivization; the incidence correspondence I defined in that case is irreducible if and only if the I defined above is irreducible.)

(2) Prove that V_r is irreducible and find its dimension.

(3) Find the dimension of the set of symmetric $n \times n$ matrices of rank $\leq r$. (It may not be very obvious that the set of symmetric matrices containing a fixed W in their kernel has a dimension that is independent of W. If we think of the symmetric matrix as a quadratic form (assuming $chark \neq 2$), then we are considering the space of quadratic forms on the quotient k^n/W.)

Plane curves.

Problem 3. A degree d plane curve $C = Z(f)$ in \mathbb{P}^2 is defined by a degree d homogeneous nonzero polynomial $f(X_0, X_1, X_2)$. Two curves $C_1 = Z(f)$ and $C_2 = Z(g)$ are equal if the polynomials f and g differ by a constant factor. We parametrize the set of all plane curves of degree d by the projectivization \mathbb{P}^N of the space of all degree d homogeneous polynomials in 3 variables. Write $[C] \in \mathbb{P}^N$ for the point corresponding to the curve C.

A curve $C = V(f)$ is singular at a point $P \in C$ if all first order partial derivatives of f vanish at P. Since f is homogeneous, we have

$$ \sum_i x_i \frac{\partial f}{\partial x_i} = d \cdot f. $$
Hence, if all partials vanish at \(P \), so does \(f \).

Let \(D \subseteq \mathbb{P}^N \) be the locus of singular curves. \(D \) is called the *discriminant locus*. Also let \(S \subseteq \mathbb{P}^N \times \mathbb{P}^2 \) be the locus of singularities:

\[
S = \{([C], P) | C \text{ is singular at } P \}.
\]

1. Prove that \(S \) is closed in \(\mathbb{P}^N \times \mathbb{P}^2 \).
2. Show that the fibres of the projection \(S \to \mathbb{P}^2 \) are irreducible of the same dimension. Conclude that \(S \) is irreducible and find its codimension in \(\mathbb{P}^N \times \mathbb{P}^2 \).
 (Hint: the fibres do not depend on the point in \(\mathbb{P}^2 \). Choose a convenient point, for example \((1 : 0 : 0)\) and describe its fibre.)
3. The curve \(Z(X_1^d + X_2^d) \) has one singular point. (No need to prove this.) Use this to show that \(D \subseteq \mathbb{P}^N \) is an irreducible hypersurface.
4. Given two distinct curves of degree \(d \), \(C_1 = V(f) \), \(C_2 = V(g) \), prove that \(Z(af + bg) \) is a singular curve for some \(a, b \in k \).

Resolutions of singularities of plane curves.

The blowup of \(\mathbb{A}^2 \) at the point \(0 \) is:

\[
Bl_0(\mathbb{A}^2) = \{(x_1, x_2, y_1, y_2) \in \mathbb{A}^2 \times \mathbb{P}^1 | x_1 y_2 = x_2 y_1 \}.
\]

Projection to the first factor defines a morphism \(\pi : Bl_0(\mathbb{A}^2) \to \mathbb{A}^2 \). The blowup is covered by 2 charts \(U_1, U_2 \), each isomorphic to \(\mathbb{A}^2 \), and the map \(\pi \) to \(\mathbb{A}^2 \) in the two charts is given by

\[
(u_1, u_2) \mapsto (u_1, u_1 u_2), \quad (u_1, u_2) \mapsto (u_1 u_2, u_2).
\]

One can similarly blow up \(\mathbb{A}^2 \) at any point \(P \) by choosing coordinates with \(P = 0 \). More generally, one can blow up a point \(P \subseteq U \subseteq X \), where \(U \cong \mathbb{A}^2 \).

If \(C \subseteq \mathbb{A}^2 \) is a curve passing through \(0 \), then the strict transform of \(C \) is \(C' \subseteq Bl_0(\mathbb{A}^2) \), such that \(\pi^{-1}(C) = C' \cup \pi^{-1}(0) \) and \(C' \) does not contain \(\pi^{-1}(C) \).

One can resolve the singularities of any plane curve by blowing up singular points and replacing the curve by its strict transform.

Problem 4. Resolve the singularities of the following plane curves. They may need several blowups to resolve all singularities.

1. \(C = Z(x^3 - y^5) \).
2. \(C = Z(x^2 y + xy^2 - x^4 - y^4) \)

Resolution of surface singularities.

Similarly to the case of \(\mathbb{A}^2 \), one can define the blowup of \(\mathbb{A}^3 \) at \(0 \). The blowups is covered by three charts \(U_i \), each isomorphic to \(\mathbb{A}^3 \). The projection maps \(U_i \to \mathbb{A}^3 \) are:

\[
(u_1, u_2, u_3) \mapsto (u_1, u_1 u_2, u_1 u_3), (u_1, u_2, u_3) \mapsto (u_1 u_2, u_2 u_3), (u_1, u_2, u_3) \mapsto (u_1 u_3, u_2 u_3, u_3).
\]

Given a surface \(Y \subseteq \mathbb{A}^3 \), the strict transform of \(Y \) in \(Bl_0(\mathbb{A}^3) \) is defined similarly to the case of curves.

We can sometimes resolve the singularities of a surface by blowing up singular points and taking the strict transform. Suppose \(Y \) has only one singular point \(P \). Then in the resolution \(f : Y' \to Y \) we can consider the inverse image \(f^{-1}(P) \), consisting of a finite union of irreducible curves. The resolution graph of \(f \) is constructed as
follows. Take one node for each component of $f^{-1}(P)$ and connect two nodes with an edge if the two components intersect.

Problem 5. Let Y have the A_k singularity:

$$Y = V(x^{k+1} + y^2 + z^2),$$

where $k \geq 1$. Find the resolution of Y by a sequence of blowups of points. Find the graph of the resolution. (Hint: Each blowup should introduce two new components to the fibre $f^{-1}(P)$.)

Problem 6. Let Y have the D_k singularity:

$$Y = V(x^{k-1} + xy^2 + z^2),$$

where $k \geq 4$. Find the resolution of Y when $k = 4$ by a sequence of blowups of points. Find the graph of the resolution. (The variety Y has one singular point. After one blowup there will be several singular points.)

Schemes.

Problem 7. Let $X = \text{Spec} \mathbb{R}[x,y]/(x^2 + y^2 - 1)$, let $Y = \text{Spec} \mathbb{R}[x]$, and let $f : X \to Y$ be the projection to the x-axis (considering X as a closed subscheme of $\mathbb{A}^2_\mathbb{R}$ and Y the x-axis $\mathbb{A}^1_\mathbb{R}$). Describe the fibres of f over closed points of Y. (Hint: Given a maximal ideal in $\mathbb{R}[x]$, such as $P = (x^2 + 1)$, the fibre over P is the scheme $\text{Spec} \mathbb{R}[x,y]/(x^2 + y^2 - 1, x^2 + 1)$. Find the points in the fibre and their residue fields.)

Problem 8. Let p be a prime number and $X = \mathbb{A}^1_{\mathbb{F}_p}$. Let $X(\mathbb{F}_{p^n})$ be the set of morphisms of schemes

$$\text{Spec}(\mathbb{F}_{p^n}) \to X.$$

Elements of $X(\mathbb{F}_{p^n})$ are called \mathbb{F}_{p^n}-valued points of X.

1. Find the number of elements in $X(\mathbb{F}_{p^n})$. (Hint: a morphism of affine schemes is the same as a homomorphism of rings.)

2. A closed point of $P \in X$ is a maximal ideal in $\mathbb{F}_p[x]$, generated by an irreducible monic polynomial $f(x)$. The residue field of the point is $\mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^m}$, where m is the degree of f. Let N_m be the number of all such points with residue field \mathbb{F}_{p^m}, equivalently, the number of monic irreducible polynomials of degree m. Find the number of elements in $X(\mathbb{F}_{p^n})$ in terms of the numbers N_m. (Note that to give a morphism $\text{Spec} \mathbb{K} \to X$ is the same as to give a point $P \in X$ and an embedding of fields $\kappa(P) \to \mathbb{K}$. Such field embeddings can be counted using Galois theory.)

3. Explain how to compute N_m from the number of elements in $X(\mathbb{F}_{p^n})$. You don’t need to find the exact formula for N_m, which requires Möbius inversion. It is enough to explain how the numbers N_m can be computed for $m = 1, 2, 3, \ldots$.

Problem 9. Let (X, \mathcal{O}_X) be a ringed space, G a group acting on (X, \mathcal{O}_X). Then the quotient X/G can again be given the structure of a ringed space. Let X/G be the quotient space, that means, the set of G-orbits. This set is given the quotient topology where $U \subset X/G$ is open if and only if $\pi^{-1}(U)$ is open in X. Here $\pi : X \to X/G$ is the quotient map. The sheaf of rings on X/G consists of G-invariant sections of \mathcal{O}_X:

$$\mathcal{O}_{X/G}(U) = \mathcal{O}_X(\pi^{-1}(U))^G.$$
Note that if \(X \) is covered by \(G \)-invariant open sets \(V_i \), then \(X/G \) is covered by the quotients \(V_i/G \).

(1) Let \(X = \mathbb{A}^2_k \setminus \{(0,0)\} \), let \(G = k^\ast \), and let \(G \) act by
\[
t \cdot (x, y) = (tx, ty), \quad t \in k^\ast, \quad (x, y) \in X.
\]
Show that \(X/G = \mathbb{P}^1_k \). (Hint: show that \(X \) is covered by two \(G \)-invariant affines, isomorphic to \(\mathbb{A}^1_k \times G \). Describe the quotients of these charts and how the quotients are glued in \(X/G \).)

(2) Let \(X \) and \(G \) be as in the previous part, but let the action be
\[
t \cdot (x, y) = (tx, t^{-1}y), \quad t \in k^\ast, \quad (x, y) \in X.
\]
Show that \(X/G \) is the line \(\mathbb{A}^1_k \) with doubled origin.

Problem 10. Let \(X \) be a variety over \(k = \bar{k} \), and \(x \in X \) a closed point. The Zariski tangent space of \(X \) at \(x \) is
\[
T_{X,x} = (m_x/m_x^2)^\ast.
\]
Here \(m_x \in \mathcal{O}_{X,x} \) is the maximal ideal of \(x \) and \((\cdot)^\ast\) denotes the dual \(k \)-vector space. Suppose \(x \) lies in an affine chart \(\text{Spec} \, R \). Then we can replace \(m_x \) with the maximal ideal of \(x \) in \(R \) without changing the quotient \(m_x/m_x^2 \). For example, if \(X = \text{Spec} \, k[x_1, \ldots, x_n] \), and \(x \) is the origin, then \(m_x/m_x^2 \) has basis \(x_1, \ldots, x_n \). The dual vector space has the dual basis \(e_1, \ldots, e_n \).

(1) Prove that to give a vector \(v \in T_{X,x} \) is the same as to give a morphism of \(k \)-schemes \(\text{Spec} \, k[t]/(t^2) \rightarrow X \), with the unique point of \(\text{Spec} \, k[t]/(t^2) \) mapping to \(x \).

(2) Let \(X \) be an affine variety. Let \(T_X \) be the union of all tangent spaces \(T_{X,x} \).
This is the set of all morphisms of \(k \)-schemes \(\text{Spec} \, k[t]/(t^2) \rightarrow X \). Show that this set has naturally a scheme structure. To do this, start with \(X = \text{Spec} \, k[x_1, \ldots, x_n] \). Then a \(k \)-algebra homomorphism \(k[x_1, \ldots, x_n] \rightarrow k[t]/(t^2) \) is given by \(x_i \mapsto a_i + b_it \). This gives a point \((a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{A}^{2n} = T_X \).

The projection map \(T_X \rightarrow X \) is given by \((a_1, \ldots, b_n) \mapsto (a_1, \ldots, a_n) \). When \(X = \text{Spec} \, k[x_1, \ldots, x_n]/(f_1, \ldots, f_m) \), show that the \(a_i, b_i \) must satisfy some polynomial equations, which then define \(T_X \) as a closed subscheme of \(\mathbb{A}^{2n} \).

Problem 11. Let \(k \) be an algebraically closed field of characteristic \(p \). Consider two groups: the additive group \((k, +) \) and the multiplicative group \((k^\ast, \cdot) \). Let \(F : a \rightarrow a^p \) be the Frobenius map. It defines a group homomorphism for both groups. The kernel of \(F \) is the trivial subgroup in both cases.

The two groups can be given the structure of an algebraic variety. We write the additive group as \(\mathbb{G}_a = \text{Spec} \, k[x] \) and the multiplicative group as \(\mathbb{G}_m = \text{Spec} \, k[x, x^{-1}] \).

The group multiplication and inverse maps are defined by morphisms of varieties:
\[
\mu : \mathbb{G}_a \times \mathbb{G}_a \rightarrow \mathbb{G}_a, \quad \iota : \mathbb{G}_a \rightarrow \mathbb{G}_a.
\]
Similarly, the Frobenius map is defined as a morphism \(F : \mathbb{G}_a \rightarrow \mathbb{G}_a \). The Frobenius is a group homomorphism in the sense that
\[
F \circ \mu = \mu \circ (F, F) : \mathbb{G}_a \times \mathbb{G}_a \rightarrow \mathbb{G}_a.
\]

(1) Let \(K \) be the kernel of \(F : \mathbb{G}_a \rightarrow \mathbb{G}_a \), that is, \(K \) is the inverse image scheme of the closed point \(0 \in \mathbb{G}_a \). The multiplication map \(\mu \) and the inverse map \(\iota \) restrict to give morphisms of schemes
\[
\mu : K \times K \rightarrow K, \quad \iota : K \rightarrow K.
\]
We say that these morphisms give \(K \) the structure of a group scheme. Describe the scheme \(K \) and the two morphisms \(\mu \) and \(\iota \).

(2) Let \(N \) be the kernel of \(F : \mathbb{G}_m \to \mathbb{G}_m \). Again, describe \(N \) and the induced group scheme structure. Note that \(N \) and \(K \) are isomorphic as schemes, but the group operations are different.

Problem 12. Recall that a closed point in an affine scheme \(\text{Spec} R \) is a maximal ideal in \(R \).

(1) Show that every affine scheme \(X \) has a closed point. Equivalently, show that every ring has a maximal ideal. (Use Zorn’s lemma. Check the upper bound condition for ideals.)

(2) Prove that every quasicompact topological space has a smallest nonempty closed subset. Smallest means that it does not contain a smaller closed nonempty subset. (Use Zorn’s lemma. Why is quasi-compactness needed?)

(3) Prove that every quasicompact scheme contains a closed point. (A closed subset of a scheme can be given a scheme structure, similar to the case of a closed subset of a variety. In particular, it is covered by open affines.)

(4) Find a non-quasicompact topological space that has no minimal nonempty closed set.