1. (1) The number of \(\xi \in \text{temp}(K\overline{F}) \) is \(\text{deg}(K/F) \).
 Each \(\xi \) gives an embedding \(K \rightarrow \overline{F} \). To lift \(\xi \) to an embedding \(\gamma : E \rightarrow \overline{F} \) there are \(\text{deg}(E/K) \) choices.
 Thus, there are \(\text{deg}(K/p) \cdot \text{deg}(E/K) \cdot \text{deg}(E/F) \) choices for \(\gamma \).
 This implies that \(E/F \) is separable.

(2) Let \(\alpha \in E \) and \(f(x) \) the minimal polynomial of \(\alpha \) over \(F \).
 Then \(f(x) \) has distinct roots. If \(\alpha \in K \), then \(f(x) \) itself
 has distinct roots, hence \(K/F \) is separable. The polynomial \(f(x) \)
 may split into irreducible factors in \(K[x] \). One of these
 factors is the minimal polynomial of \(\alpha \) over \(K \). The
 factor still has distinct roots.

2. (1) Example
 \[
 \begin{array}{c|c|c}
 \mathbb{Q}(\sqrt[3]{5}) & \text{normal} & \text{not normal, the conjugate} \\
 \mathbb{Q}(\sqrt[3]{5}) & \text{normal} & i \sqrt[3]{5}, i, \frac{1}{2} \sqrt[3]{4}, \text{is not in the extension.} \\
 \mathbb{Q} & \text{normal} & \\
 \end{array}
 \]

(2) If \(\alpha \in E \), \(f(x) \) is its minimal polynomial, then all roots of
 \(f(x) \) lie in \(E \). The minimal polynomial of \(\alpha \) over \(K \) is a
 factor of \(f(x) \), hence all its roots lie in \(E \).

(3) \(\mathbb{Q}(\sqrt[3]{2}, \xi) \) \(\xi \): 3rd root of 1.

\[
\begin{array}{c}
\mathbb{Q}(\sqrt[3]{2}) \\
\mathbb{Q}(\sqrt[3]{2}) \\
\mathbb{Q} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\mathbb{Q}(\sqrt[3]{2}) & \text{normal, splitting field of } x^2 - 2, & \\
\mathbb{Q} & \text{not normal, } \sqrt[3]{2 \sqrt[3]{2}} \text{ is conjugate to } \sqrt[3]{2}, & \text{not in the field.}
\end{array}
\]
3. (1) Let \(\alpha \) be a root of \(f(x) = x^p - \alpha \).

and the minimal polynomial of \(\alpha \) over \(F \) is a factor of \(f(x) \).

However, in \(\overline{F}[x] \), \(f(x) \) splits

\[f(x) = (x - \alpha)^p, \]

so \(\alpha \) is the only root of its minimal polynomial.

(2) Every \(\alpha \in E \) has only one conjugate, \(\alpha \) itself. \(\sigma \in \text{Gal}(E/F) \)

must map \(\alpha \) to one of its conjugates, hence \(\sigma = id_E \).

(3) Let \(K \) be the field generated by \(S \), \(F \subseteq S \subseteq K \subseteq E \).

But all elements of \(K \) are separable, hence \(K \subseteq S \).

Clearly \(F \subseteq S \) is separable because every \(\alpha \in S \) is separable over \(F \).

Let \(\alpha \in E \). We show that \(\alpha^{p^m} \in S \) for some \(m \).

Let \(f(x) \in F[x] \) be the minimal polynomial of \(\alpha \).

If \(f'(x) = 0 \), we can write \(f(x) = h(x^{p^k}) \), and repeat with \(h \).

In the end we get

\[f(x) = g(x^{p^k}), \quad g'(x) \neq 0, \quad g(x) \text{ is separable}. \]

Since \(\alpha \) is a root of \(f(x) \), \(\alpha^{p^m} \) is a root of \(g(x) \)

and hence separable.