Problem 1. Quadratic extensions of \(\mathbb{Q} \).

(1) Show that \(\mathbb{Q}(\sqrt{2}) \) is not isomorphic to \(\mathbb{Q}(\sqrt{3}) \) as abstract fields.

(2) Find the Galois group of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) over \(\mathbb{Q} \).

Problem 2. Let \(E \) be the splitting field of \(x^5 - 2 \) over \(\mathbb{Q} \).

(1) Find the degree of \(E \) over \(\mathbb{Q} \). (Hint: \(E = \mathbb{Q}(\sqrt[5]{2}, \zeta) \).)

(2) Find the Galois Group of \(E \) over \(\mathbb{Q} \). Denote elements of the Galois group \(\sigma_{i,j} \), where \(i,j \) indicate where the generators are mapped. Explain how to multiply these elements. Find \(C_4 \) as a normal subgroup of the Galois group so that the quotient is also cyclic.

Problem 3. The following steps prove that the cyclotomic polynomial \(\Phi_n(x) \) is irreducible in \(\mathbb{Z}[x] \) (and hence also irreducible in \(\mathbb{Q}[x] \)). This proof is due to Landau. Recall that we defined \(\Phi_n(x) \) as the monic polynomial with roots all primitive \(n \)-th roots of 1. Let us fix one primitive root \(\zeta \).

\[
\Phi_n(x) = \prod_{i=1}^{n-1} (x - \zeta^i),
\]

where \(i \) runs over integers \(1, \ldots, n-1 \) such that \(\gcd(i,n) = 1 \). Let \(f(x) \in \mathbb{Z}[x] \) be monic the irreducible polynomial of degree \(d \) that has \(\zeta \) as a root. It is a factor of \(\Phi_n(x) \), which itself is a factor of \(x^n - 1 \).

(1) Apply division algorithm to \(f(x^j) \) and \(f(x) \),

\[
f(x^j) = q_j(x)f(x) + r_j(x)
\]

to deduce that there are integer polynomials \(r_1(x), \ldots, r_n(x) \) of degree \(< d \) such that for any \(i \geq 0 \),

\[
f(\zeta^i) = r_j(x)
\]

for some \(j \). Moreover, if \(f(\zeta^i) = s(\zeta) \) for any polynomial \(s(x) \) of degree \(< d \) then \(s = r_j \). (Hint consider \(s(\zeta) - r(\zeta) \).)

(2) When \(p \) is a prime number, show that \(f(x^p) = (f(x))^p \mod p \) (this is true for any integer polynomial, not just \(f(x) \)). Applying the division algorithm to \(f(x^p) \) we get

\[
f(x^p) = f(x)q(x) + ps(x).
\]

for some integer polynomial \(s(x) \) of degree \(< d \). Deduce that \(p \) must divide \(r_j(x) \) for some \(j = 1, \ldots, n \).

(3) Show that if \(p \) is large enough then some \(r_j(x) = 0 \) and \(f(\zeta^p) = 0 \).

(4) Show that \(f(\zeta^i) = 0 \) for all \(i \) such that \(\gcd(i,n) = 1 \) and hence \(f(x) = \Phi_n(x) \). (Hint: we may run the same argument as above with \(\zeta \) replaced by another root of \(f(x) \), for example \(\zeta^p \), and the prime \(p \) replaced by a prime \(q \). This will produce more and more roots of \(f(x) \).)