Exam rules:

- You may refer to any result that was proved in class or that appeared in the homework. Any other nontrivial statement must be given a proof. If in doubt about using some result, please ask during the exam.
- There are 5 problems in this exam. The first 4 problems are worth 5 marks each, the last one 6 marks.
PROBLEM 1. Let F be a field. Prove that a nonzero ideal $I \subset F[x]$ is contained in only a finite number of maximal ideals of $F[x]$. Describe these maximal ideals.

$\mathbb{F}_{[x]}$ is a PID:
\[I = (f) . \]

$\mathbb{F}_{[x]}$ is also a UFD. Factor f into irreducibles:
\[f = g_1 \cdot g_2 \cdots g_n . \]

Then (g_i) are maximal ideals containing I.
Problem 2. Let $F \subset F(\alpha)$ be a field extension of odd degree. Prove that $F(\alpha^2) = F(\alpha)$.

\[
\begin{pmatrix}
F(\alpha^1) \\
F(\alpha^2) \\
F
\end{pmatrix}
\]

degree 1 or 2 because $\alpha^2 \in F(\alpha^1)$. d odd

Since $2 \nmid d$, $\deg F(\alpha^1)/F(\alpha^2) = 1$, $F(\alpha) = F(\alpha^1)$.
PROBLEM 3. Let F be a finite field, $f(x) \in F[x]$ an irreducible polynomial, and E the splitting field of $f(x)$. If $\alpha \in E$ is a root of $f(x)$, prove that $E = F(\alpha)$. (Hint: Is $F(\alpha)$ Galois over F?)

$F(\alpha)$ is a finite field, hence Galois over \mathbb{F}_p for some p, and also Galois over F.

\[
\begin{array}{c}
F(\alpha) \\
\downarrow \\
F \\
\downarrow \\
\mathbb{F}_p
\end{array}
\quad \text{Galois} \quad \Rightarrow \quad \begin{array}{c}
F(\alpha) \\
\downarrow \\
F \\
\downarrow \\
\mathbb{F}_p
\end{array} \text{ Galois}.
\]

Since $F(\alpha)/F$ is Galois, it contains all conjugates of α over F. This means that all roots of $f(x)$ lie in $F(\alpha)$, $F(\alpha) = E$.

Problem 4. Prove that the polynomial

\[f(x) = x^4 + 2x^2 + 4x + 3 \]

is irreducible in \(\mathbb{Q}[x] \). (Hint: reduce mod 3.)

\[f(x) = x^4 + 2x^2 + x \pmod{3} \]

\[= x(x^3 + 2x + 1) \]

The factor \(x^3 + 2x + 1 \) has no roots in \(\mathbb{Z}/3\mathbb{Z} \), hence it is irreducible in \(\mathbb{Z}/3\mathbb{Z}[x] \).

If \(f(x) \) factors in \(\mathbb{Q}[x] \) then it factors in \(\mathbb{Z}[x] \), and the factors reduce to \(x \) and \(x^3 + 2x + 1 \pmod{3} \).

Let's check that \(f(x) \) has no linear factor in \(\mathbb{Z}[x] \). A root of \(f(x) \) in \(\mathbb{Z} \) must divide 3, and must be equal to 0 mod 3. This gives two possible roots: 3, -3. Neither one is a root:

\[3^3 + 2 \cdot 3^2 + 4 \cdot 3 + 3 = 3 \left(3^3 + 2 \cdot 3 + 4 + 3 \right) = 0 \]

\[\Rightarrow 3 \cdot 2 \cdot 3^2 + 4 \cdot 3 = 0 \]

\[\Rightarrow 4 = 0 \pmod{3}. \]
Problem 5. Let \(p \neq 2 \) be a prime and let \(\xi \in \mathbb{C} \) be a primitive \(p \)-th root of 1.
(1) Show that
\[\mathbb{Q}(\xi + \xi^{-1}) \subseteq \mathbb{Q}(\xi) \]
is an extension of degree 2.
(2) Show that \(\mathbb{Q} \subseteq \mathbb{Q}(\xi + \xi^{-1}) \) is a Galois extension and find its Galois group.

1) Note that
\[f^* (f + f^{-1}) = f^2 + 1 \]
Hence \(f \) is a root of
\[f(x) = x^2 - (f + f^{-1})x + 1, \]
and the extension has degree \(\leq 2 \).
The degree is not 1 because \(f + f^{-1} \in 1\mathbb{R} \) but \(f \notin 1\mathbb{R} \).

2) Galois correspondence
\[
\begin{array}{cccc}
\mathbb{Q} & \mathbb{Q}(f) & \mathbb{Q}(f + f^{-1}) & \mathbb{Q} \\
2 & 1 & H & G
\end{array}
\]
Here \(G = C_{p-1} \), \(H \) is a subgroup of order 2.
Since \(G \) is abelian, \(H \leq G \) is normal. Then
\[\mathbb{Q}(f + f^{-1})/\mathbb{Q} \]
is Galois with Galois group
\[C_{p-1}/C_2 \cong C_{p-1}/2 \].